
Research Inventy: International Journal of Engineering And Science 

Vol.6, Issue 7  (August 2016), PP -18-30 

Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com 

18 

 

Thermohaline Convection With Variable Viscosity 
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Abstract: The problem of double diffusive convection with variable viscosity confined between the two 

horizontal plates is investigated by the linear stability analysis. The transformed governing equations are 

numerically solved by using the Galerkin method. We have studied both stationary convection and oscillatory 

convection. The threshold values of Rayleigh number and wave number are computed and presented for various 

boundary conditions viz. rigid-rigid (𝑅/𝑅),  rigid-free (𝑅/𝐹), free-rigid (𝐹/𝑅) and free-free (𝐹/𝐹)  and for 

different values of physical parameters viz., salinity Rayleigh number𝑅𝑠 , Lewis number L, viscosity ratio c and 

Prandtl number𝑃𝑟 .  For rigid-rigid boundary conditions we have studied the effect of 𝑐, 𝑅𝑠  on the vertical 

velocity and temperature eigenfunctions at the onset. It is observed that the salinity concentration stabilizes the 

dynamical system. The occurrence of co-dimension two bifurcation point(𝐶𝑇𝑃)is shown for various boundary 

conditions. 

Keywords:Thermohaline convection, Variable viscosity, Exponential fluid, Galerkin method. 

 

I. Introduction 
Natural convection in liquid-dominated hyper saline geothermal system is called thermohaline 

convection because it is driven by the thermal and solutal effects on liquid density. A problem of stability of 

two-component fluids subjected to uniform heating is of immense importance to geophysicists, hydrologists and 

soil scientists. A knowledge of the setting-up of convective currents in such a case is of much use in 

understanding the origin of mineral ores, which are either in the molten state (ores deep within the Earth at a 

very high temperature and may be in the molten state) or dissolved in fluids. In most of the situations a 

treatment of multi-component fluids is warranted since ores generally are found with other mineral impurities as 

well as mixtures of gases and / or liquids, e.g., crude oil associated with ground-water. For economical 

extraction of oil, one should have an idea of minimum perturbations needed to initiate convection in such fluids 

and this in turn necessitates the study of multi-component fluids saturating in the Earth's crust. In most of the 

cases, due to high-temperature variations involved [of the order of 250 K[Horne and O'Sullivan [1]], viscosity 

cannot be taken as a constant. However, most of the works in this field have been carried out by assuming 

viscosity to be a constant. For density variations, the assumption of a Boussinesq fluid has been made, which 

means that the changes in density are significant only in the body force term, while this density may be treated 

as a constant everywhere else, in the equation of motion [see Chandrasekhar [2] and Joseph [3] for a detailed 

discussion]. 

Setting-up of convective currents in two-component fluids is a different process from that of single-

component fluids. This is so because in a single-component fluid, a force due to the density gradient is caused 

by the variation of density, which is due to the variation in temperature whereas in multi-component fluids a 

force due to density gradient is caused by the variation of density which is due to the variations in both 

concentration and temperature, and in turn lead to setting up of instability earlier. 

 In the case of a single-component fluid when the density of the fluid decreases vertically upwards it is 

necessary for a stable configuration, whereas in a multi-component fluid this is not necessarily so, and each 

component can diffuse with respect to each other. As the diffusivity of mass is less than the diffusivity of heat, a 

displaced portion of the fluid loses its heat content faster than its salt content. The resulting forces due to a 

density gradient may tend to increase the displacement from the original position causing instability. In some 

cases, it may cause over stable motion also. This is understood by considering the layer of a fluid whose density 

decreases with the increase of temperature and increases with the concentration of salt ([4]-[6]). Suppose that 

when both the concentration and temperature decrease vertically upwards, then the warmer liquid tend to rise to 

a cooler region. Since the concentration diffuses slowly (𝐾𝑠 < 𝐾, i.e., the diffusivity of heat K is usually much 

greater than the diffusivity of a salt), and also heavier, the force due to the density gradient tend to bring it 

down. As this concentration has spent some time on the cooler region, it is heavier than the ambient fluid and 

hence it overshoots in its initial position, thus causing oscillations of increasing amplitude. 

Earlier workers (e.g.,Veronis [4], Nield [7] and Shirtcliffe [8]) studied the nature of thermohaline 

convection in the esence of a stable salinity gradient. Turner [9] studied in detail both experimentally and 

theoretically the nature of the thickness of a growing layer at the bottom. Brains and Gill [10] theoretically 
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obtained the relation for the critical salinity Rayleigh number. In all these above works viscosity is considered as 

a constant. 

In this paper an attempt is made to study the effect of variable viscosity on the convective instability of 

a two-component fluid. Various cases of stabilizing and destabilizing gradients of concentration and temperature 

are analysed. The linear stability analysis of this physical model is analysed by using the Galerkin method. We 

have considered the Galerkin expansion for all the dependent variables in terms of the orthogonal functions 

satisfying different combinations of the boundary conditions namely, (𝑅/𝑅), (𝑅/𝐹), (𝐹/𝑅), and (𝐹/𝐹). We 

present the results of stationary and oscillatory instabilities for different values of salinity Rayleigh number Rs, 

viscosity ratio c and Prandtl number Pr for the temperature dependent variable viscosity fluids, namely, the 

exponential fluids. It should be noted that the term oscillatory convection refers to the small amplitude 

convection at the onset of convection. Oscillatory fluid motions can occur in double diffusive convection where 

the density contribution from the temperature component is destabilizing and from the solute component is 

stabilizing. These exponential fluids were first used by Torrence and Turcotte [11]. It is shown that the 

numerical results obtained in the present study are in good agreement with the results of Stengel et. al. [12] for 

the onset of stationary convection in the absence of salinity with variable viscosity. Also for constant viscosity, 

with or without salinity our results coincide with those of Chandrasekhar [2] (Table 1 and 2). 

The scheme of the paper is the following one. In Section 2 we obtain the non-dimensional perturbation 

equations of the thermohaline convection for exponential fluids. In Section 3 we have studied the linear stability 

analysis. Numerical results are presented in Section 4. Finally, conclusions are made in Section 5. 

 

II. Mathematical Formulation 
A quiescent layer of a two-component Boussinesq fluid, is assumed to be confined between the two 

boundaries at 𝑧 = −𝑑/2and = 𝑑/2.. The viscosity of the fluid is assumed to be a function of temperature. The 

governing equations for thermohaline convection with variable viscosity in dimensional form are given by: 

the equation of continuity 

   ∇′.𝑉  ′ = 0,     (2.1) 

the momentum equation 

   ρ0 
𝜕

𝜕𝑡
∇′. 𝑉  ′ 𝑉  ′= –∇′P′ + ρ0  𝐾1𝑖 + 𝐾2𝑗 + 𝐾3𝑘  + 𝜌𝑔 ,(2.2) 

the heat equation 
𝜕𝑇 ′

𝜕𝑡 ′
+  ∇′. 𝑉  ′ 𝑇′=𝐾∇′2𝑇 ′ ,      (2.3) 

 

and the concentration equation 

 
𝜕𝑆 ′

𝜕𝑡 ′
+  𝑉  ′ . ∇′ 𝑆 ′  =  𝐾𝑠∇

′2𝑇 ′ ,      (2.4) 

 

where in eq. (2.2) 

𝐾1  = 2𝜇
𝜕2𝜕𝑢′

𝜕𝑥′2
+

𝜕

𝜕𝑦′
 𝜇  

𝜕𝑢′

𝜕𝑦′
+
𝜕𝑢′

𝜕𝑥′
  +

𝜕

𝜕𝑧′
 𝜇  

𝜕𝑤′

𝜕𝑥′
+
𝜕𝑢′

𝜕𝑧′
  , 

        𝐾2 = 2𝜇
𝜕2𝜕𝑣′

𝜕𝑦′2
+

𝜕

𝜕𝑧′
 𝜇  

𝜕𝑣′

𝜕𝑧′
+
𝜕𝑤 ′

𝜕𝑦′
  +

𝜕

𝜕𝑥′
 𝜇  

𝜕𝑢′

𝜕𝑦′
+
𝜕𝑣′

𝜕𝑥′
  , 

        𝐾3 =
𝜕

𝜕𝑧′
 2𝜇

𝜕𝑤′

𝜕𝑧′
 +

𝜕

𝜕𝑥′
 𝜇  

𝜕𝑤′

𝜕𝑥′
+
𝜕𝑢′

𝜕𝑧′
  +

𝜕

𝜕𝑦′
 𝜇  

𝜕𝑢′

𝜕𝑧′
+
𝜕𝑢′

𝜕𝑧′
  . 

 

The dependent variables are, the velocity 𝑉  ′ 𝑢′ , 𝑣 ′ , 𝑤 ′ , density ρ, pressure 𝑃′,temperature T', solute 

mass concentration S' and viscosityµ. The remaining quantities are assumed to be constant. In the medium the 

diffusivities of heat and concentration are denoted by k and 𝑘𝑠 ,respectively. 

When a salt is added to a volume of a water the volume increases, and that tends to decrease the density of the 

salt, but the total density of the fluid increases. Let 𝛽𝑠 measures this density increase. Thus in the thermohaline 

convection density variations depend on both diffusive mechanisms. Thusthe variation may be taken as ([4], [5] 

and [13]): 

 

   𝜌 = 𝜌0 1 − 𝛼 𝑇
′ − 𝑇1

′ −  𝑆 ′ − S𝑏
′   ,    (2.5) 

  𝜌 = 𝜌0 1 − 𝛼 𝑇
′ − 𝑇1

′ + 𝛽𝑠 𝑆
′ − S𝑏

′   ,      (2.6) 

 

with 𝛼 = −
1𝜕

𝜌0
 
𝜕𝜌

𝜕𝑇 ′
 and𝛽𝑠 =  

1𝜕

𝜌0
 
𝜕𝜌

𝜕𝑆 ′
 . 
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Here 𝜌0 is the mean density of the system, 𝑇 ′and S′  are temperature and salinity concentration of the 

system, a is thermal expansion coefficient and 𝛽𝑠 is the coefficient of density and it increases with respect to 

salinity and S𝑏
′  is the salinity concentration at the bottom boundary. The choice of the density variation will 

depend upon the physics of the two-component system. If the heavier component of the fluid is introduced into 

the system, then due to diffusion of mass, there results an increase in the density of the mixture in which case 

the relation (2.5) is appropriate. If the lighter component is introduced then mass diffusion lowers the density of 

the mixture, hence the validity of relation (2.6). 

The following four cases are considered (for the density variation given by eq. (2.5)): 

(a)  heated from above (stabilizing) and salted from above (destabilizing);  

(b)  heated from below (destabilizing) and salted from below (stabilizing);  

(c)  heated from below (destabilizing) and salted from above (destabilizing);  

(d)  heated from above (stabilizing) and salted from below (stabilizing).  

In this paper the case (b) is discussed in detail. It can be noted that, when salting from below the concentration 

decreases as the depth of the layer increases upwards. 

The conduction state is characterized by  

𝑉  ′ = 0, 𝑇𝑠
′ = 𝑇1

′ −  Δ𝑇 ′/𝑑 𝑧′ , 𝑆𝑠
′ = 𝑆𝑏

′ −  Δ𝑆 ′/𝑑 𝑧′ , 𝑃𝑠
′ = 𝑃0

′ + 𝑧′𝑔 + 𝛼𝛽𝑔
𝑧′2

2
. 

 In the conductive state solutions suffix s stands for static. The uniform temperature gradient Δ𝑇 ′ and 

concentration 

Gradient Δ𝑆 ′  are positive if the corresponding quantities decrease upwards. The static solutions, 𝑇𝑠
′of𝑇 ′  gives 

destabilizing effect and 𝑆𝑠
′   of  𝑆 ′  gives stabilizing effect.Now the velocity, temperature, pressure and 

concentration perturbations written as 

 

𝑉  ′ = 𝑉  ′𝑠 + 𝑉  ′∗, 𝑇 ′ = 𝑇𝑠
′ + 𝜃′∗, 𝑃′ = 𝑃𝑠

′ + 𝑃′∗and𝐶 ′ = 𝑆 ′ + 𝑆𝑠
′∗, 

 

respectively.The scaling 𝑘/𝑑, 𝛽𝑑, 𝑑2/𝑘 , 𝜌0𝑘
2𝑑−2 and 𝛽𝑠𝑑 are used to non-dimensionalize the velocity, 

temperature, time, pressure and concentration, respectively. Here 𝛽𝑠𝑑 = 𝛥𝐶 ′  and 𝛽𝑑 = 𝛥𝑇 ′ .  Thus, the non-

dimensional governing equations in two dimensions viz., (x, z)planes are given by: 

 

 ∇′ . 𝑉  = 0,        (2.7) 

 

1

𝑃𝑟
 
∂𝑉  

∂𝑡
+  ∇′ . 𝑉   𝑉   = −

∇𝑃

𝑃𝑟
+  𝑅𝑇𝜃 − 𝑅𝑠𝐶 𝑒 𝑧 + 

𝑒 𝑧  2𝑓
𝜕2𝑢

𝜕𝑥2
+

𝜕

𝜕𝑧
 𝑓  

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
   + 𝑒 𝑦  

𝜕

𝜕𝑧
 𝑓

𝜕𝑣

𝜕𝑧
 +

𝜕

𝜕𝑥
 𝑓

𝜕𝑣

𝜕𝑥
  + 𝑒 𝑧  

𝜕

𝜕𝑧
 𝑓

𝜕𝑤

𝜕𝑧
 +

𝜕

𝜕𝑥
 𝑓

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
  , (2.8) 

 
𝜕𝜃

𝜕𝑡
+  𝑉  . ∇ 𝜃 = 𝑤 + ∇2𝜃,                                   (2.9) 

 
1

𝐿
 
∂𝐶

∂𝑡
+  𝑉  . ∇ 𝐶 =

𝑤

𝐿
+ ∇2𝐶,         (2.10) 

 

where𝑒 𝑥 , 𝑒 𝑦  and 𝑒 𝑧are the unit vectors along x, y and z– directions respectively. For our convenience we have 

omitted the symbol '*' from eqn. (2.7)-(2.10). The z-component of the curl of curl of the momentum equation 

(2.8) is 

 
1

𝑃𝑟

∂

∂𝑡
− 𝑓∇2 ∇2𝑤 − 2

𝑑𝑓

∂z
∇
∂𝑤

∂z
+
𝑑2𝑓

∇z2
 
∂2

𝑑𝑥2
+
∂2

𝑑𝑧2
 𝑤 + 𝑅𝑇∇𝑕

2𝜃 − 𝑅𝑠∇𝑕
2𝐶 

  = 𝑒 𝑧 .
1

𝑃𝑟
 ∇ × ∇ × ∇ 𝑉  . ∇ 𝑉   .       (2.11) 

The variable viscosity,𝑣 𝑧 (= 𝜇/𝜌0)is given by𝑣 𝑧 (= 𝑣0𝑓 𝑧 , where𝑣0 is the reference value of the kinematic 

viscosity evaluated at𝑇0 and𝑓(= 𝑣/𝑣0) is the dimensionless viscosity. 

Following Stengel et al.[12], the exponential dependence of the viscosity is assumed to be: 

 

𝑓 = exp  𝑐 𝑇0 − 𝑇  ,     (2.12) 

where 

𝑐 = log  
𝑣𝑚𝑎𝑥
𝑣𝑚𝑖𝑛

 = log  
1 + γ

1 − γ
 , 0 ≤ γ < 1. 

 

The temperature dependence (2.12) appears important both in industrial applications and in geophysics [11]. 
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III. Linear Stability Analysis 
In this section we study the effect of physical parameters on the onset of convection. The normal mode 

expansion of the dependent variables is assumed to be of the form 

 
 𝑤, 𝜃, 𝐶 =  𝑊 𝑧 , Θ 𝑧 , 𝐶 𝑧  exp  𝑖𝑞𝑥 + 𝑝𝑡 , (2.13) 

 

where𝑊 𝑧 , Θ 𝑧   𝑎nd  𝐶 𝑧  are the eigenfunctions, p denotes the growth rate of the perturbations and q 

denotes the horizontal wavenumber. Using the 

above set of solutions (3.13), into the linear parts of the eqs.(2.8)-(2.10), we get 

 
𝑝

𝑃𝑟
 𝐷2 − 𝑞2 𝑊 =  𝐷2𝑓  𝐷2 + 𝑞2 𝑊 +  2𝐷𝑓  𝐷2 − 𝑞2 2+𝐷𝑊 + 𝑓 𝐷2 − 𝑞2 2𝑊 − 𝑅𝑇𝑞

2Θ𝑅𝑠𝑞
2𝐶,(3.14) 

  

𝑝Θ =  𝐷2 − 𝑞2 Θ + 𝑊,       (3.15) 
𝑝

𝐿
𝐶 =  𝐷2 − 𝑞2 𝐶 +

𝑊

𝐿
.        (3.16) 

 

Here 𝐷 = 𝑑/𝑑𝑧  is the differential operator, 𝑊(𝑧)  is the z-part of the vertical component of the 

velocity, Θ(𝑧) is the z-part of temperature, C is the z-part of concentration and𝐿 = 𝑘𝑠/𝑘, (where 𝑘𝑠 and k are the 

diffusivities of the slower diffusing and faster diffusing components respectively) is the Lewis number. 

 

3.1.  Boundary Conditions 

The physical model given in eqs. (3.14)-(3.16) are analyzed by considering the following four types of boundary 

conditions namely,(𝑅/𝑅), (𝑅/𝐹), (𝐹/𝑅),and (𝐹/𝐹). 
 

(i)  No slip condition on the top and bottom boundaries (𝑅/𝑅).i.e., 

𝑊 = 𝐷𝑊 = Θ + 𝐶 = 0at𝑧 = 1/2, 𝑧 = −1/2.       

 (3.17) 

 

(ii)  Stress-free condition at the top 𝑧 = −1/2 and no slip condition at the bottom (𝑧 = −1/2)boundaries 

(𝐹/𝑅).i.e., 

 

𝑊 = 𝐷2𝑊 = Θ = 𝐶 = 0at𝑧 = 1/2,  
𝑊 = 𝐷𝑊 = Θ = 𝐶 = 0at𝑧 = −1/2,       (3.18) 

 

(iii)  No slip condition at the top 𝑧 = 1/2and stress free condition at the bottom  

(𝑧 = −1/2)boundaries(𝑅/𝐹).i.e., 

 

𝑊 = 𝐷𝑊 = Θ = 𝐶 = 0at𝑧 = 1/2,  
𝑊 = 𝐷2𝑊 = Θ = 𝐶 = 0at𝑧 = −1/2,        (3.19) 

 

(iv)  Stress-free condition at the top and bottom boundaries (𝐹/𝐹). i.e., 

 

𝑊 = 𝐷2𝑊 = Θ = 𝐶 = 0at𝑧 = 1/2, 𝑧 = −1/2      (3.20) 

 

In the above equations (3.17)-(3.20), D denotes differentiation with respect to the vertical coordinate z. 

 

The unknown variables 𝑊(𝑧),𝐶(𝑧) and Θ(𝑧)are expanded in terms of the following complete sets of trial 

functions, that satisfy the homogeneous boundary conditions(3.17)-(3.20) 

 

𝑊 𝑧 =  𝑎𝑛𝑊𝑛 𝑧 ,
∞
𝑛=1     𝐶 𝑧 =  𝑏𝑛𝐶𝑛 𝑧 and∞

𝑛=1 Θ 𝑧 =  𝑐𝑛Θ𝑛 𝑧 ,
∞
𝑛=1    (3.21) 

 

where 𝑊𝑛 𝑧 , 𝐶𝑛 𝑧 and Θ𝑛 𝑧  are the trial functions that satisfy the homogeneous boundary conditions (3.17)-

(3.20), and the coefficients 𝑎𝑛 ,  𝑏𝑛and 𝑐𝑛  are unknown constants. The trial functions that satisfy the no-slip 

boundary conditions (3.17) are chosen as: 

  

𝑊𝑛 𝑧 =

 
 

 
cosh  𝛼𝑛 𝑧 

cosh  
𝛼𝑛
2
 
−

cos  𝛼𝑛 𝑧 

cos  
𝛼𝑛
2
 

, 𝑛 is odd

sinh  𝛼𝑛𝑧 

sinh  𝛼𝑛/2 
−

sin  𝛼𝑛 𝑧 

sin  𝛼𝑛 /2 
, 𝑛 is even

    (3.22)  
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where the constants 𝛼𝑛  are zeros of: 

tanh 𝛼𝑛/2 + tan 𝛼𝑛/2 = 0, 𝑛 is odd 

coth 𝛼𝑛/2 + cot 𝛼𝑛/2 = 0,      𝑛 is even 

 

The function 𝐶𝑛 𝑧  is given by 

𝐶𝑛 𝑧 =  
cos 𝑛𝜋𝑧 ,   𝑛   is  odd

 sin 𝑛𝜋𝑧 ,    𝑛   is  even
      (3.23)  

 

The function Θ𝑛 𝑧  is given by 

 

   Θ𝑛 𝑧 =  
cos 𝑛𝜋𝑧 ,   𝑛   is  odd

 sin 𝑛𝜋𝑧 ,    𝑛   is  even
    (3.24)  

Similarly, we can choose the trial functions for the remaining boundary conditions viz., R/F, F/R and 

F/F. According to the Galerkin method, the residuals are required to be orthogonal to the trial functions. This 

method is used to obtain an infinite set of linear homogenous algebraic equations for the unknown coefficients, 

namely,𝑎𝑛 ,  𝑏𝑛and 𝑐𝑛 in eq.(3.21). In order to obtain a finite number of linear homogeneous algebraic equations, 

we truncate expansions of 𝑊𝑛 𝑧 , 𝐶𝑛 𝑧 and Θ𝑛 𝑧  in eq. (3.21) at M, N and K terms respectively. Thus we are 

left with matrix eigenvalue problem as 

 

 𝑈 − 𝑝𝑉 𝑋 = 0,   (3.25) 

 

whereU, V and X are the matrices and they are given by 

 

𝑈 =  

 𝐵𝑗𝑖   𝐶𝑗𝑖   𝐷𝑗𝑖
𝐹𝑗𝑖   𝐺𝑗𝑖   𝐻𝑗𝑖
𝐽𝑗𝑖   𝐾𝑗𝑖   𝐿𝑗𝑖

 , 𝑉 =  

𝐴𝑗𝑖    0    0

0    𝐸𝑗𝑖    0

  0     0     𝐼𝑗𝑖

 ,  𝑋 =  

𝑎𝑛
  𝑏𝑛
  𝑐𝑛

 .   (3.26) 

 

 

The matrix elements in eq.(3.26) are defined as 

 

 𝐴𝑗𝑖 =
1

𝑃𝑟
 𝑊𝑗𝐷

2  𝑊𝑖 − 𝑞
2 𝑊𝑗  𝑊𝑖 , 

𝐵𝑗𝑖 =  (𝐷2𝑓)  𝑊𝑗𝐷
2  𝑊𝑖 + 𝑞2 𝑊𝑗  𝑊𝑖 +  2𝐷𝑓  𝑊𝑗𝐷

3  𝑊𝑖 + 𝑞2 𝑊𝑗  𝑊𝑖  
   +𝑓 𝑊𝑗𝐷

4  𝑊𝑖 − 2𝑞2 𝑊𝑗𝐷
2𝑊𝑖 + 𝑞4 𝑊𝑗𝑊𝑖   

𝐶𝑗𝑖 = −𝑅𝑇𝑞
2  𝑊𝑗Θ𝑖 ,  𝐷𝑗𝑖 = −𝑅𝑠𝑞

2  𝑊𝑗  𝐶𝑖 ,𝐸𝑗𝑖 =  Θ𝑗Θ𝑖 , 

 𝐹𝑗𝑖 =  Θ𝑗  𝑊𝑖 ,  𝐷𝑗𝑖 =  Θ𝑗𝐷
2Θ𝑖 − 𝑞

2Θ𝑗Θ𝑖 ,  

𝐻𝑗𝑖 =  0 ,  𝐼𝑗𝑖 =
1

𝐿
  𝐶𝑗  𝐶𝑖 ,   𝐽𝑗𝑖 =

1

𝐿
  𝐶𝑗  𝑊𝑖 ,            

𝐾𝑗𝑖 =  0 ,  𝐿𝑗𝑖 =  𝐶𝑗𝐷
2𝐶𝑖 − 𝑞

2𝐶𝑗𝐶𝑖       (3.27) 

and the angular bracket expression represents 

 𝑕1(𝑧)𝑕2(𝑧) =  𝑕1(𝑧)𝑕2(𝑧)𝑑𝑧
1/2

−1/2

,  

where𝑕1(𝑧) and 𝑕2(𝑧)are the orthogonal functions. For the non-trivial solutions, the system of eqs. (3.25) gives 

the characteristic equation as: 

     𝑈 − 𝑝𝑉 = 0.     (3.28) 

The system of eqs. (3.25) is solved as a generalized eigenvalue problem. This task is accomplished 

numerically, by making this infinite set of equations to finite by the numerical truncation. The real parts of the 

eigenvalues, say, 𝑅𝑒 𝑝𝑘 < 0 determine the stability of the system. If 𝑅𝑒 𝑝𝑘 < 0 for all k, the system is said to 

be stable. If 𝑅𝑒 𝑝𝑘 > 0  for at least one value of k, the system is unstable. The marginal stability curve 

corresponds to the case when one of the eigenvalues satisfies 𝑅𝑒 𝑝𝑘 = 0. The eigenvalue p is a function of the 

physical parameters 𝑅𝑇 , q, 𝑅𝑠 c, 𝑃𝑟 , Land 𝑓 𝑧 .The parameter RT determines the onset of instabilities and 

depends on the physical parameters𝑅𝑇 , q, 𝑅𝑠c,𝑃𝑟 , L and𝑓 𝑧 .Only those RT values that are real, positive and 

finite are considered to be physically meaningful. For any q we take the smallest of these meaningful RT. We 

obtain critical value of RT by iterating q until the marginal stable value of RT is minimized. The convective 

system can be unstable to either stationary convection or oscillatory convection at the onset of instability. The 

occurrence of stationary convection or oscillatory convection in the convective system depends on the physical 

parameters. 
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3.2. Stationary Convection 

The stationary convection is obtained when one of the eigenvalues, 𝑝𝑘  vanishes. Thus, the Rayleigh 

number for the stationary convection(RT= RT) is Table 1. Comparison of critical Rayleigh numbers of 

convection between the present results and those of Chandrasekhar [2] for the constant viscosity (c = 0). 

 
 Top and bottom boundaries 𝑅/𝑅 𝑅/𝐹 𝐹/𝑅 𝐹/𝐹 

𝑅𝑠 = 0 
Stationery 

convention 

Present results 1707.7758 1100.4712 1100.4712 657.01535 

Chandrasekhar [2] 1707.7620 1100.650 1100.650 657.5110 

 

Table 2. Comparison of critical Rayleigh numbers of stationary convection between the present results and 

those of Stengel et al. [12], for the viscosity ratio (c = 6) in the absence of salinityconcentration (𝑅𝑠). 
Top and bottom boundaries 𝑅/𝑅 𝑅/𝐹 𝐹/𝑅 𝐹/𝐹 

Present results 2167.0125 1678.3256 1630.3212 1258.0123 

Stengel et al. [2] 2167.94 1678.330 1629.510 1258.510 

 

obtained from eq. (3.28) for𝑖 = 𝑗 = 1 as: 

 𝑅𝑠 =
𝐼11𝐷11𝐺11 +𝐵11𝐻11𝐽11 +𝐸11𝐷11𝐽11−𝐵11𝐺11𝐿11

𝐶 𝐼11𝐻11−𝐸11𝐿11 
   (3.29) 

It can be observed that the matrix elements on the right hand side of the above eq. (3.29) are 

independent of 𝑃𝑟 .  Hence the critical Rayleigh number for stationary convection is independent of 𝑃𝑟 .  The 

critical Rayleigh number𝑅𝑇 = 𝑅𝑠𝑐and the critical wave number 𝑞 = 𝑞𝑠𝑐  for the onset of stationary convection 

depends on the physical parameters 𝑅𝑠, L and c. 

 

3.3.  Oscillatory Convection 

The condition for oscillatory convection are given by𝑝𝑘 = ±𝑖𝑤,  where w is the frequency of the oscillations 

and 𝑤2 > 0,where 

𝜔2 =
1

𝐴11𝐹11𝐾11
 𝐵11𝐹11𝐿11− + 𝐸11𝐶11𝐾11𝑅𝑇 − 𝐼11𝐷11𝐹11

  +𝐴11𝐺11𝐿11 + 𝐵11𝐺11𝐾11 − 𝐴11𝐻11𝐽11 (3.30) 

The Rayleigh number for the oscillatory convection (𝑅𝑇 = 𝑅0)is given by: 

 

𝑅0 =
𝑀

𝐾11𝐶11  𝐼11𝐻11𝐴11𝐹11 +𝐸11𝐵11𝐹11𝐾11 +𝐸11𝐴11𝐺11𝐾11 
,       (3.29) 

where 

𝑀 = 2𝐵11𝐺11𝐿11𝐴11𝐹11𝐾11 + 𝐵11
2 𝐹11𝐾11

2 𝐺11 + 𝐵11
2 𝐹11

2 𝐾11𝐿11 − 𝐵11𝐾11𝐼11𝐷11  

+𝐴11𝐺11
2 𝐾11

2 𝐵11 − 𝐴11
2 𝐺11𝐾11𝐻11𝐽11𝐴11𝐹11

2 𝐿11
2 𝐵11 − 𝐴11𝐹11

2 𝐿11𝐼11𝐷11  

+𝐴11
2 𝐹11𝐿11

2 𝐺11 − 𝐴11
2 𝐹11𝐿11𝐻11𝐽11 − 𝐸11𝐷11𝐽11𝐴11𝐹11𝐾11  

 

The quantities in eqs. (3.29), (3.30) and (3.31) are obtained from eq. (3.27) for  𝑖 = 𝑗 = 1. The critical 

Rayleigh number at𝑅𝑇 = 𝑅𝑜𝑐and critical wave number at𝑞 = 𝑞𝑜𝑐 , for various types of boundary conditions, are 

computed when𝑤2 > 0.   The threshold values of𝑅𝑜𝑐  and 𝑞0𝑐  depends on 𝐿, 𝑃𝑟 , 𝑅𝑠  and c. For the present 

physical system, we have observed that overstability can occur when the 𝑃𝑟  is finite. The time dependent 

convective flow exists when 𝑅 = 𝑅𝑜𝑐 . These numerical values of Rayleigh number and wavenumber are 

obtained by using Maple software. At𝑅𝑇 = 𝑅𝑠𝑐 , 𝑞 = 𝑞𝑠𝑐and at 𝑅𝑇 = 𝑅𝑜𝑐 , 𝑞 = 𝑞𝑜𝑐  we get the pitchfork and the 

Hopf bifurcations, respectively. The pitchfork and the Hopf bifurcation are known as the primary bifurcations. 

Pitchfork bifurcation arises when the characteristic eq. (3.28) possesses a simple zero eigenvalue. Hopf 

bifurcation arises when a pair of purely imaginary complex conjugate eigenvalues is obtained from the 

characteristic eq. (3.28). The secondary bifurcations, viz., Tokens-Bogdanov bifurcation point(𝑤2 = 0)and co-

dimension two bifurcation point  𝐶𝑇𝑃  (𝑤2 > 0), occurs on combining Rayleigh numbers and wavenumbers of 

stationary convection and oscillatory convection. At the (CTP), we get𝑅𝑠𝑐 = 𝑅𝑜𝑐but 𝑞𝑠𝑐 ≠ 𝑞𝑜𝑐 .The intersection 

point of the neutral curves of stationary convection and oscillatory convection in the (𝑐, 𝑅𝑐)-plane gives (CTP) 

and is discussed in detail in Section 4.4. 

 

IV. Numerical Results And Discussions 
The parameters which are influencing the criterion for the onset of convection are the salinity Rayleigh 

number 𝑅𝑠,  Lewis number L, Prandtl number𝑃𝑟  and the viscosity ratio c. The salient characteristics of these 

parameters are exhibited in Figures (1) to (12). In all these figures green lines stand for stationary convection 

and red lines stand for oscillatory convection. 

In Figure 1, we have shown the effect of c and𝑅𝑠 on critical Rayleigh number for large𝑃𝑟 .Figures l(a-d) 

are plotted for𝑅/𝑅, 𝑅/𝐹 ,𝐹/𝑅  and 𝐹/𝐹  boundary conditions, respectively. For large 𝑃𝑟  we get only the 

stationary convection at the onset. Figure l(a) shows that as c, increases initially 𝑅𝑟𝑠𝑐  increases and approaches 
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to a maximum value, then starts decreasing for further increment values of c. Let 𝑐 = 𝑐∗ denotes the maximum 

value on a curve. For 𝑐 < 𝑐∗, as c increases the onset of convection increases and for 𝑐 > 𝑐∗, as c increases the 

onset of stationary convection decreases. This figure also shows the effect of 𝑅𝑠  on the onset. As 𝑅𝑠 > 0, 
increases the onset of convection also increases. This implies that the salinity concentration inhibits the onset of 

convection. Similar results have been observed for the remaining boundary conditions. Due to the density of 

concentration fluids, the critical Rayleigh numbers of thermohaline convection are larger than the critical 

Rayleigh number of pure fluids. 

In Figures 2(a-d), we have shown the effect of 𝑅𝑠 and c on 𝑞𝑠𝑐 for𝑅/𝑅, 𝑅/𝐹, 𝐹/𝑅 and 𝐹/𝐹 boundary 

conditions, respectively. Figure 2(a), shows as c increases 𝑞𝑠𝑐  initially decreases and reaches to a minimum 

value. Further increment in the values of 𝑐, 𝑞𝑠𝑐 increases monotonically.As 𝑅𝑠increases 𝑞𝑠𝑐 .Where as for other 

boundary conditions 𝑞𝑠𝑐  decreases considerably as c increases and after attaining a minimum value 𝑞𝑠𝑐  increases 

monotonically for further increment values of c. 

In Figures 3(a-d), we have shown the effect of Lon 𝑅𝑠𝑐 .  From these figures we can observe that as L 

increases the value of 𝑅𝑠𝑐  deceases, this implies that the effect of L destabilizes the convective system. Figures 

4(a-d), show that the effect of L on 𝑞𝑠𝑐 . For 𝑅/𝑅 boundary conditions 𝑞𝑠𝑐  initially decreasesand reaches to a 

minimum value slowly as c increases and increases monotonically as c increases further. For 𝑅/𝐹 and 𝐹/𝑅 

boundary conditions, 𝑞𝑠𝑐  increases slowly as c increases and when c is small, for higher values of c as c 

increases, 𝑞𝑠𝑐  increases monotonically. Figure 4(d), shows that as c increases, initially 𝑞𝑠𝑐  decreases and 

increases rapidly for further incremental values of c. This behavior of 𝑞𝑠𝑐  changes when𝑐 ≈ 10.  In Figures 5 to 

7, we have shown the occurrence of oscillatory convection for 𝑅/𝑅 and 𝐹/𝐹  boundary conditions. In these 

figures we have studied the effect of𝑅𝑠,L and 𝑃𝑟  on the onset of convection. The behavior of 𝑅𝑜𝑐depends on c 

and is similar to 𝑅𝑠𝑐  with respect to c. It is observed that 𝑅0𝑐  increases either 𝑅𝑠or 𝑃𝑟  increases, but decreases as 

L increases. These figures show that for finite 𝑃𝑟 , 𝑅𝑜𝑐 is less than 𝑅𝑠𝑐 , i.e., the convective system is unstable to 

oscillatory convection. From these figures we can also observe that either 𝑅𝑠  or 𝑃𝑟  increases, 𝑞𝑜𝑐  decreases, 

whereas 𝑞𝑜𝑐  decreases as L increases. The dependence of 𝑞𝑜𝑐  is similar to that of 𝑞𝑠𝑐with increasing values of c. 

Figures 8 (a-c), show the effect of viscosity ratio, c, for physical parameters 𝑅𝑠, L, 𝑃𝑟  on w1. Figure 9, shows the 

vertical velocity eigenfunction for 𝑊(𝑧) as a function of the depth z, L and 𝑅𝑠 with 𝑅/𝑅boundary conditions for 

several values of viscosity ratio c. From this figure, we can observe that for 𝑐 = 10 the velocity is symmetric 

about the midpoint of the layer. As the ratio of viscosity to the top and bottom boundaries increases, velocity of 

the fluid particles where it takes the maximum value is located near the bottom of the fluid layer where the fluid 

is less viscous. Figure 10, shows the variation of temperature eigenfunction 0(𝑧) as a function of depth, c and 𝑅𝑠 
with 𝑅/𝑅boundary conditions and for several values of the viscosity ratio c. From this figure we can observe 

that for small values of 𝑐, Θ(𝑧)  is symmetric about the mid point of the fluid layer. As c increases the 

temperature perturbation becomes confined to small region near the bottom of the fluid layer where the fluid is 

less viscous. Figure 11, shows the effect of 𝑅𝑠 for different values of viscosity variation c. The straight lines 

which represent the variation of the critical Rayleigh number with the salinity Rayleigh number are lines with 

positive slopes. The temperature dependent viscosity variation (i.e., the values for 𝑐 ≠ 10) displaces the straight 

line upwards. The increase in the critical Rayleigh numbers clearly show that the system stabilizes with 

increasing viscosity ratio c and salinity gradient (𝑅𝑠). 
Figure 12, shows the occurrence of stationary convection and oscillatory convection for the given 

values of physical parameters. Figure 12, is plotted for fixed values of 𝑐 = 0and 𝑐 = 5. In this figure green line 

correspond to stationary convection and red line correspond to oscillatory convection. Green line is plotted for 

𝑅𝑠𝑐  and red line is plotted for 𝑅0𝑐  for different values of 𝑅𝑠. From this figure we can observe that, we get only 

stationary convection at the onset. The values on the green and red lines represent the occurrence of the 

pitchfork and Hopf bifurcations, respectively. These two bifurcations are known as primary bifurcations (co-

dimension one bifurcations). The behavior of 𝑊(𝑧) and Θ(𝑧) of oscillatory convection near the onset is similar 

to the behavior of 𝑊(𝑧)and Θ(𝑧)of stationary convection. Due to this reason we have omitted the numerical 

results related to 𝑊(𝑧)and Θ(𝑧)of oscillatory convection. 

 

V. Conclusions 

The exponential behavior of the fluid is considered between two horizontal boundaries in which the 

lower boundary is heated from below and also salted from below. The thermohaline convection with 

temperature dependent variable viscosity has been studied by using linear stability analysis for 𝑅/𝑅, 𝑅/𝐹, 𝐹/𝑅 

and 𝐹/𝐹 boundary conditions. Since the system is double diffusive, at the onset we can get either stationary 

convection or oscillatory convection. 

The occurrence of the type of convection is analyzed by using Prandtl number. For large Prandtl 

number, we have obtained only stationary convection at the onset. Based on the numerical results the parameter 

range of viscosity ratio region can be divided as; low viscosity ratio region moderate viscosity ratio region and 
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large viscosity ratio region. For finite 𝑃𝑟  the results show that the system is unstable always to oscillatory 

convection. 

 In the low viscosity ratio region as c increases 𝑅𝑠𝑐  is nearly a constant.In the moderate viscosity region as c 

increases 𝑅𝑠𝑐  increases and attainsa maximum value at 𝑐 = 𝑐∗ .  In the large viscosity ratio region, as 

cincreases 𝑅𝑠𝑐  decreases.   The decreasing value of 𝑅𝑠𝑐  indicates thatthere exists convection in a sub-layer. 

 In the lower viscosity region Roc remains a constant. In the moderateviscosity region as c increases Roc 

increases and reaches to a maximumvalue at 𝑐 = 𝑐∗ .   The variation of c in the moderate viscosity 

ratiostabilizes the onset of oscillatory convection. For the values of c in thelarge viscosity ratio region as c 

increases 𝑅0𝑐  decreases. This interestingphenomenon shows that there exists convection in the sub-layer. 

 The parameter 𝑅𝑠 > 0 shows that as 𝑅𝑠 increases 𝑅𝑠𝑐  increases, i.e.,the effect of 𝑅𝑠 > 0stabilizes the onset 

of stationary convection. 

 As the L increases, 𝑅𝑠𝑐  decreases.   This implies that the effect of Ldestabilizes the onset of stationary 

convection. 

 As 𝑅𝑠 > 0increases, 𝑅𝑜𝑐  increases.   This implies that the effect of𝑅𝑠 > 0stabilizes the onset of oscillatory 

convection. 

 As L increases 𝑅𝑜𝑐  deceases, which indicates that the effect of L destabilizes the convective system. 

 As 𝑃𝑟  increases 𝑅𝑜𝑐  decreases. This shows that the effect of 𝑃𝑟  destabilizes the onset of oscillatory 

convection. 

 The maximum value of z component of vertical velocity 𝑊(𝑧) on thecurve increases as c increases. The 

maximum value of 𝑊(𝑧)occurs atthe bottom warm boundary where the fluid is less viscous for a givenc. 

 The maximum value of z component of temperature Θ 𝑧 on the curveincreases as c increases.   The 

maximum value of Θ 𝑧 occurs at thebottom warm boundary where the fluid is less viscous for a given 

c.This shows that temperature perturbations confine to low viscosityregion. 

 Figure 12, clearly shows that 𝑅𝑜𝑐 < 𝑅𝑠𝑐 .   This shows that, thermohaline convection with exponential 

variation of fluid property exhibitsoscillatory convection at the onset for finite𝑃𝑟 . 

 

 
Figure 1:The effect of 𝑅𝑠𝑐  and c on 𝑅𝑠𝑐  for L = 0.1 and 𝑃𝑟 .Numerically plotted neutral stability curves to 

represent onset of stationary convection for exponential fluid.   Figure 1(a-d) are plotted for 𝑅/𝑅, 𝑅/𝐹, 𝐹/𝑅 

and 𝐹/𝐹 boundary conditions respectively. 
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Figure 2:The effect of 𝑅𝑠 and c on 𝑞𝑠𝑐  for L = 0.1 and 𝑃𝑟 .Numerically plotted neutral stability curves to 

represent onset of stationary convection for exponential fluid.   Figure 1(a-d) are plotted for 𝑅/𝑅, 𝑅/𝐹, 𝐹/𝑅 

and 𝐹/𝐹 boundary conditions respectively. 

 

 
Figure 3:The effect of Lewis number L and viscosity ratio c on 𝑅𝑠𝑐  for 𝑅𝑠 = 5 × 103.Numerically plotted 

neutral stability curves to represent onset of stationary convection for exponential fluid.   Figure 3(a-d) are 

plotted for 𝑅/𝑅, 𝑅/𝐹, 𝐹/𝑅 and 𝐹/𝐹 boundary conditions respectively. 
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Figure 4:The effect of Lewis number L and viscosity ratio c on 𝑞𝑠𝑐  for 𝑅𝑠 = 5 × 103 .Numerically plotted 

neutral stability curves to represent onset of stationary convection for exponential fluid.   Figure 4(a-d) are 

plotted for 𝑅/𝑅, 𝑅/𝐹, 𝐹/𝑅 and 𝐹/𝐹 boundary conditions respectively. 

 

 
Figure 5:Critical Rayleigh number 𝑅𝑐  and critical wave number 𝑞𝑐  verses viscosity ratio c for 𝐿 = 0.1and 

𝑃𝑟 = 103 .    Figs. (a) and (c) are plotted forR/Rboundaries.  Figs. (b) and (d) are plotted for F/F boundary 

conditions.  Green and red lines are corresponding to stationary and oscillatory convections, respectively. 
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Figure 6:Critical Rayleigh number 𝑅𝑐  and critical wave number 𝑞𝑐  verses viscosity ratio c for 𝑅𝑠 = 5 × 103 

and 𝑃𝑟 = 103 .   Figs. (a) and (c) are plotted for R/R boundaries.  Figs. (b) and (d) are plotted for F/F boundary 

conditions.  Green and red lines are corresponding to stationary and oscillatory convections, respectively. 

 

 
Figure 7:𝑃𝑟  verses critical Rayleigh number and critical wave numbers for 𝑅𝑠 = 5 × 103 and 𝐿 = 0.1.   Figs. (a) 

and (c) are plotted for R/R boundaries.  Figs. (b) and (d) are plotted for F/F boundary conditions.  Green and red 

lines are correspond represent stationary and oscillatory convections, respectively. 
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Figure 8: Until a moderate viscosity ratio c, frequency 𝑤2 is almost constant.  For large viscosity variation, 𝑤2 

increases.  The frequency, 𝑤2 , decreases as  𝑅𝑠 and L increases, while the opposite trend isobserved with respect  

 

to  𝑃𝑟 .  

Figure 9:The vertical velocity eigen𝑊(𝑧) functions for different c values for R/R boundary conditions with𝐿 =
0.1,  𝑅𝑠 = 5 × 103. 

 

 
Figure 10:Temperature perturbation 𝛩(𝑧) for different values of viscosity ration c with 𝐿 = 0.1,  𝑅𝑠 = 5 ×

103and R/R boundary conditions. 
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Figure 11:Effect of salinity Rayleigh number and viscosity variation c on critical Rayleigh number with 

𝐿 = 0.1,  𝑅𝑠 = 5 × 103for stationary convection. 

 

 
Figure 12: Effect of salinity Rayleigh number 𝑐 = 5 on critical Rayleigh number with = 0.1,  𝑅𝑠 = 5 × 103, 

 𝑃𝑟 = 103 .  Green line corresponding to stationary convection and red line corresponds to oscillatory convection. 
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