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Abstract: Retinal image analysis is increasingly prominent as a non-intrusive diagnosis method in 

modern ophthalmology. In this paper, we present a novel method to segment blood vessels and optic 

disc in the fundus retinal images. The method could be used to support non-intrusive diagnosis in 

modern ophthalmology since the morphology of the blood vessel and the optic disc is an important 

indicator for diseases like diabetic retinopathy, glaucoma and hypertension. Our  method  takes  as  

first  step the extraction of the retina vascular tree using the graph cut technique. The blood vessel 

information is then used to estimate the location of the optic disc. The optic disc segmentation is 

performed using two alternative methods. The Markov Random Field (MRF) image reconstruction 

method  segments  the  optic disc by removing vessels from the optic disc region and the 

Compensation Factor method segments the optic disc using prior local intensity knowledge of the 

vessels. The proposed method is tested on three public data sets, DIARETDB1, DRIVE and STARE. 

The results and comparison with alternative  methods show that our method achieved exceptional 

performance in segmenting the blood vessel and optic disc. 

Index Terms: Retinal images, vessel segmentation, optic disc segmentation, graph cut segmentation. 

 

I. Introduction 
The segmentation of retinal image structure has been of great interest because it could as a 

non intrusive diagnosis in modern ophthalmology. The morphology of the retinal blood vessel and the 

optic disc is an important structural indicator for assessing the presence and severity of retinal 

diseases such as diabetic retinopathy, hypertension,   glaucoma,   haemorrhages,   vein   occlusion and 

neo-vascularisation. However to assess  the  diameter and tortuosity of retinal blood vessel or the  

shape  of  the optic disc, manual planimetry has commonly been used by ophthalmologist, which is 

generally time consuming and prone with human error, especially when the vessel structure are 

complicated or a large number of image are acquired and prone with human error , especially when 

the vessel structure are compited or a large number of images are acquired to be labeled by hand . 

therefore  a reliable automated methos for retinal blood vessel and optic disc segmentation, which 

preserves various vessel and optic disc characteristics is attractive in computer aided-diagnosis.                  

An automated segmentation and inspection of retinal blood vessel  features  such  as  diameter,  colour  

and  tortuosity  as well as the optic disc morphology  allows  ophthalmologist and eye care specialists 

to perform mass vision screening exams for early detection of retinal diseases and treatment 

evaluation. This could prevent and reduce vision impairments; age related diseases and many 

cardiovascular diseases as well as reducing the cost of the screening. 

Over the past few years, several segmentation techniques have been employed for the segmentation of 

retinal structures such as blood vessels and optic disc and diseases like lesions in fundus retinal images. However 

the acquisition of fundus retinal images under different conditions of illumination, resolution and field of view 

(FOV) and the overlapping in the retina cause a significant to the performance of automated blood vessel and 

optic disc segmentations. Thus, there is a need for a reliable technique for retinal vascular tree extraction and 

optic disc detection, which preserves various vessel and optic disc shapes. In the following segment, we briefly  

review  the  previous  studies on blood vessel segmentation and optic disc segmentation separately. 
 

II. Related Works 
Two different approaches have been developed to segment the vessels of the retina. The pixel 

processing based method and tracking method  The pixel processing based approach performs the vessel 

segmentation in a two-pass operation. First the appearance of the vessel is enhanced using detection process 

such as morphological pre processing techniques and adaptive filtering. The second operation is the recognition 

of vessel structure Using thinning or branch point  operation  to classify a pixel  as a vessel background. These 

approaches process every pixel in the image apply multiple operation on each pixel.     The second set of 

approaches to vessel segmentation are referred to as vessel tracking, vectorial tracking or tracing [1]. In contrast 

to the pixel processing based approaches, the tracking methods detect first initial vessel seed points, and then 

track the rest of the vessel pixels through  the image by measuring the continuity proprieties of the blood 

vessels. This technique is used as a single pass operation, where the detection of the vessel structures and the 

recognition of the structures are simultaneously performed. 
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The tracking based approaches included semi automated tracing and automated tracing. In the semi 

automated tracing methods, the user manually selects the initial vessel seed point. These methods are generally 

used in quantitative coronary angiography analysis and they generally provide accurate segmentation of the 

vessels. In fully automated tracing, the algorithms automatically select the initial vessel points and most 

methods use Gaussian functions to characterise a vessel profile model, which locates a vessel points for the 

vessel tracing. They are computationally efficient and more suitable for retinal image processing. Examples of 

the tracking based approaches are presented in Xu et al. [8], Maritiner-perez et al. [9], Staal et al. [5], Zhou et al  

[10]. 

Both pixel processing and tracking approaches have their own advantages and limitations over each 

other. The pixel processing approaches can provide a complete extraction of the vascular tree in the retinal 

image since they search all the possible vessel pixels across the whole image. However these techniques are 

computationally expensive and require special hardware to be suitable for large image dataset. The presence of 

noise and lesions in some retinal images causes a significant degradation in the performance of the pixel 

processing approaches as the enhancement operation may pick up some noise and lesions as vessel pixels. This 

could lead to false vessel detection in the recognition operation. On the other hand, the tracking approaches are 

computationally efficient and much faster than the pixels processing methods because they perform the vessel 

segmentation using only the pixels in the neighbourhood of the vessels structure and avoid the processing of 

every pixel in the image. Nevertheless, these methods lack in extracting a complete vascular tree in the case 

where there are discontinuities in the vessel branches. Further more, the semi automated tracking segmentation 

methods need manual input, which requires time. 

The optic nerve head is described as the brightest round area in  the  retina  where  the  blood  vessels  

converge  with a shape that is approximately elliptical and has a width of   1.8 ± 0.2 mm and height 1.9 ± 0.2 

mm [11]. The convergence feature of blood vessels into the optic disc region is generally used to estimate the 

location of the optic disc and segment it from the retinal image. But the intrusion of vessels in the optic disc 

region constitutes computational  complexity  for the optic disc segmentation as it is breaking the continuity of 

its boundary. To address this problem,  several  methods have been employed such as Chrastek et al. [12], 

Lowell et al. [13], Welfer et al. [14] and Aquino et al. [15] .  Chrastek et al. [12] presented an automated 

segmentation of the optic nerve head for diagnosis of glaucoma. The method removes the blood vessel by using 

a distance map. 

Algorithm, then the optic disc is segmented by combining a morphological operation, Hough 

Transform and an anchored active contour model. Lowell et al. [13] proposed a deformable contour model to  

segment  the  optic  nerve  head  boundary in low resolution retinal images.  The  approach  localises the optic 

disc using a specialised template matching and a directionally-sensitive gradient to  eliminate  the  obstruction 

of the vessel in the  optic  disc  region  before  performing the segmentation. Welfer et al. [14] proposed an 

automated segmentation of the optic disc in colour eye fundus image using an adaptive morphological 

operation. The method uses a watershed transform markers to  define  the  optic disc boundary and  the vessel 

obstruction is minimised by morphological erosion. 

These   techniques   are   performed   using   morphological operations  to  eliminate  the  blood  vessels  from  

the  retinal image. However, the application of morphological operations can modify the image by corrupting 

some useful information. 

In our optic disc segmentation process, the convergence feature of vessels into the optic disc region 

is used to estimate its location. We then use two automated methods (Markov Random field image 

reconstruction and Compensation Factor) to segment the optic disc. 

The rest of the paper is organised as follow. The blood vessel segmentation is discussed in Section III. 

Section IV provides the detailed description of the optic disc segmenta- tion. Section V presents the 

experimental results of our method with comparisons to other methods. Conclusions are drawn in Section VI. 

The preliminary results of the three components of the approach, namely the blood vessel segmentation, optic 

disc segmentation using the Graph Cut and Markov Random Field respectively, were presented separately in 

[16], [17], [18]. More details of the approach can be found in the PhD thesis [19]. 

 

III. Blood Vessels Segmentation 

Blood vessels can be seen as thin elongated structures in the retina, with variation in width and length. 

In order  to segment the blood vessel from the fundus retinal image, we have implemented a pre-processing 

technique, which consists of effective adaptive histogram equalisation (AHE) and robust distance transform. 

This operation improves the robustness and the accuracy of the graph cut algorithm. Fig. 1 shows the 

illustration of the vessel segmentation algorithm. 
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Fig. 1.  Vessel segmentation algorithm 

 

A. Pre-processing 

We apply a contrast enhancement process to the green channel image similar to the work presented in [20]. The intensity of 

the image is inverted, and the illumination is equalised. The resulting image is enhanced using an adaptive histogram 

equaliser, given by: 

 

EQ1  

where I is the green channel of the fundus retinal colour image, p denotes a pixel and p
0
 is the neighbourhood 

pixel around p. p
0
 2 R(p) is the square window neighbourhood with length h. s(d) = 1 if d > 0, and s(d) = 0 

otherwise with d = s (I (p) I (p
0
)). M = 255 value of the maximum intensity in the image. r is a parameter to 

control the level of enhancement. Increasing the value of r would also increase the contrast between vessel 

pixels and the background (see Fig. 2). The experimental values of the window length was set to h = 81 and r = 

6. A binary morphological open process is applied to prune the enhanced image, which discards all the 

misclassified pixels see (Fig. 2 (d)). This approach significantly reduces the false positive, since the enhanced 

image will be used to construct the graph for segmentation. 

A distance map image is created using the distance transform algorithm. This is used to calculate the direction 

and magnitude of the vessel gradient. Fig. 2 (e) and (f) show the distance map of the whole image and a sample 

vessel with arrows indicating the direction of the gradients respectively. From the sample vessel image, we can 

see the centre line with the brightest pixels, which are progressively reduced in intensity in the direction of the 

edges (image gradients). The arrows in Fig. 2 (f) referred as vector field, which is used to construct the graph in 

the next Sections. 

 

A. Graph construction for vessel segmentation 

The  graph  cut  is  an  energy  based  object  segmentation approach. The technique is characterised by 

an optimization operation designed to minimise the energy generated from a given image data. This energy 

defines the relationship between neighborhood pixel elements in an image. 

 

 
 

 

A graph G ( ; ) is defined as a set of nodes (pixels) and a set of undirected edges that connect these 

neighbouring nodes. The graph included two special nodes, a foreground terminal (source S) and a background 

terminal (sink T). includes two types of undirected edges: neighbourhood links (n-links) and terminal links (t-

links). Each pixel p 2 P (a set of pixels) in the graph presents two t-links fp; Sg and fp; T g connecting it to each 

terminal while a pair of neighbouring pixels fp; qg 2 N (number of pixel neighbour) is connect by a n-links [21]. 

Thus: 

EQ 2  
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An edge e 2 is assigned a weight (cost) We> 0. A cut is defined by a subset of edges C 2 where G (c) = h ; nCi 

separating the graph into two foreground and background with 

EQ 3  

The graph cut technique is used in our segmentation because it allows the incorporation of prior knowledge into 

the graph formulation in order to guide the model and find the optimal segmentation. Let assume A = (A1; Ap; : : 

: AP ) a binary vector set of labels assigned to each pixel p in the image, where Ap indicate assignments to pixels 

p in P . Therefore, each assignment Ap is either in foreground (F g) or background (Bg). Thus the segmentation 

is obtained by the binary vector A and the constraints imposed on the regional and boundary proprieties of 

vector A are derived by the energy formulation of the graph defined as 

EQ 4  

where the positive coefficient λ indicates the relative impor- tance of the regional term (likelihoods of 

foreground and back- ground) RA against the boundary term (relationship between neighbourhood pixels) BA. 

The regional or the likelihood of the foreground and background is given by 

EQ 5 6 7 

During the minimisation of the graph energy formulation in 

to segment thin objects like blood vessels, the second term (boundary term) in (4) has a tendency to follow short 

edges known as “the shrinking bias” [22]. This problem causes a significant degradation on the performance of 

the graph cut algorithm on thin elongated structures like the blood vessels. Fig. 3 shows an example of the blood 

vessel segmentation using the traditional graph formulation [23]. From Fig. 3, it can be seen that the blood 

vessel segmentation follows short edges, and tends to shrink in the searching for the cheapest cost. It can also be 

noticed that λ in (4) controls the relation between boundary and regional terms. Increasing the value of λ, the 

likelihood of the pixels belonging to foreground and 

background (t-links) gains strength over the regional term (n-links), which slightly improved the 

segmentation result see Fig. 3 (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

To address the above problem, the segmentation of blood vessels using the graph cut requires special graph formulation. One 

of the method used to address the shrinking bias problem 

 

 
 

described geometric proprieties of the discrete cut metric on regular grids and Finsler length can be represented 

by the sum of two terms. Those terms represent the symmetric and anti-symmetric parts of the cut metric. The 

symmetric part of the cut defines the standard geometric length of contour and it is independent of its 

orientation. The anti-symmetric part of the cut metric represents the flux of a given vector field through the 

contour [23]. 
 

To address “the shrinking bias” problem seen in Fig. 3, we have constructed a graph consisting of a symmetric part 

g+ (shrinking) and an anti-symmetric part g− (stretching) by incorporating the flux of vector v into the graph 

construction. The symmetric part g+ of the graph corresponds to a cut geometric length and is related directly 



Segmentation of Blood Vessels and Optic Disc in Retinal Images 

  38 

k 

k 

with the n-link connections and the anti-symmetric part g− is equal to flux of vector field v over the cut 

geometric and it is used to derive the t-links. Thus the the blood vessels can be segment by keeping a good 

balance between shrinking and stretching (flux) throughout the image boundary.  
1) The symmetric part of the graph: is used to assign weights on the n-link connections (edges  

2) between neigh- bouring pixels). Let consider a neighbour system of a graph described by a set of edges ek , 

where 1 ≤ k ≤ N , for N number of neighbours. Let us define ek as the shortest vector 

connecting two pixels in the direction of k, W 
+(

p) the weight 

of the edge ek at pixel p and Wf+(p) a set of the edge weights at pixel p for all directions. The corresponding 

edge weights are defined by 

3) The anti-symmetric part of the graph : We used the term Anti-Symmetry because, the flux (stretching) of 

vector field v over the cut geometric balanced the shrinking of blood vessels during the segmentation. This 

anti-symmetric part of the graph is defined by the flux of vector field v over the cut geometric. It is used to 

assign weights on the t-links (edges between a given pixel and the terminals) to balance the shrinking effect 

seen in Fig. 3. Specific weights for t-links are obtained based on the deposition of vector v. Different 

decompositions of vectorv may result in different t-links whose weights can be interpreted as an estimation 

of divergence. In our implementation, we decomposed the vector v along grid edges with the n-links 

oriented along the main axes, X and Y direction. Thus vector v can be decomposed as v = vxux + vyuy where 

ux anduy are unit vectors in X 

EQ 10 

where vx
right

 and vx
right

 are the components of vector v in X direction taken at the right and left neighbour of pixel 

P respectively. vy
up

 and vy
down

 are the Y of vector v taken at the top and down of of pixel P . is the size of the cell 

in the grid map (see Fig. 5). We add edge (s ! p) with weight C ( tp) if tp < 0, or edge (p ! t) with weight C tp 

otherwise. The parameter C is related to the magnitude of the vector v, thus pixels in the centre of the blood 

vessel have a higher connection to the source (foreground) than pixels in the edge of the blood vessels. Because 

the distance map is calculated on the pruned image and vector v is only defined for the pixels detected as blood 

vessels in the rough segmentation. For the rest of the pixels in the image, the initialisation of t-link weights is set 

as (p ! s) with weight t = 0 and (p ! t) with weight t = K, where K is the maximum weight sum for a pixel in the 

symmetric construction. Fig. 6 shows the segmentation results of the blood vessels using different 

decomposition of the vector v generating different t-link weights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optic Disc Segmentation 

The optic disc segmentation starts by defining the location of the optic disc. This process used the 

convergence feature of vessels into the optic disc to estimate its location. The disc area is then segmented using 

two different automated methods (Markov Random field image reconstruction and Compensation Factor). Both 

methods use the convergence feature of the vessels to identify the position of the disc. The Markov Random 

Field (MRF) method is applied to eliminate the vessel from the optic disc region. This process is known as 

image reconstruction and it is performed only on the vessel pixels to avoid the modification of other structures 

of the image. The reconstructed image is free of vessel and it is used to segment the optic disc via graph cut. In 

contrast to MRF method, the Compensation Factor approach segments the optic disc using prior local intensity 

knowledge of the vessels. Fig. 7 shows the overview of both the MRF and the Compensation Factor method 

process. 
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FIG6 

 

image of vessels segmented in Section III to find the location of the optic disc. The process iteratively trace 

towards the centroid of the optic disc. The vessel image is pruned using a morphological open process to 

eliminate thin vessels and keep the main arcade. The centroid of the arcade is calculated using the following 

formulation: 

 

K xi  K  yi  

X  Cy 

= 

Xi  (12) 

Cx 

= 

K  K 

i=1  =1  

     

 

where xi and yi are the coordinates of the pixel in the binary image and K is the number of pixels set to 1 (pixels 

marked as blood vessels) in the binary image. 

Given the gray scale intensity of a retinal image, we select 1% of the brightest region. The algorithm 

detects the brightest region with the most number of pixels to determine the location of the optic disc with 

respect to the centroid point (right, left, up or down). The algorithm adjusts the centroid point iteratively until it 

reaches the vessel convergence point or centre of the main arcade (centre of the optic disc) by reducing the 

distance from one centroid point to next one in the direction of the brightest region, and correcting the central 

position inside the arcade accordingly. Fig. 8 shows the process of estimating the location of the of optic disc in 

a retinal image. It is important to notice that, the vessel convergence point must be detected accurately, since 

this point is used to automatically mark foreground seeds. A point on the border of the optic disc may result in 

some false foreground seeds. After the detection of the vessel convergence point, the image is constrained a 

region of interest (ROI) including the whole area of the optic disc to minimize the processing time. This ROI is 

set to a square of 200 by 200 pixels concentric with the detected optic disc centre. Then an automatic 

initialisation of seeds (foreground and background) for the graph is performed. A neighbourhood of 20 pixels of 

radius around the centre of the optic disc area is marked as foreground pixels and a band of pixels around the 

perimeter of the image are selected as background seeds (see Fig. 9). 

 

B. Optic Disc Segmentation with Markov Random Field Image Reconstruction 

The high contrast of blood vessels inside the optic disc presented the main difficulty for it segmentation 

as it misguides the segmentation through a short path, breaking the continuity of the optic disc boundary. To 

address this problem, the MRF based reconstruction method presented in [25] is adapted in our work. We have 

selected this approach because of its robustness. The objective of our algorithm is to find a best match for some 

missing pixels in the image, however one of the weaknesses of MRF based reconstruction is the requirement of 

intensive computation. To overcome this problem, we have limited the reconstruction to the region of interest 

(ROI) and using prior segmented retina vascular tree, the reconstruction was performed in the ROI. An 

overview diagram of the optic disc segmentation with Markov Random Field Image Reconstruction is shown in 

Fig. 6. 

FIG 7,8 

 

Let us consider a pixel neighbourhood w(p) define as a square window of size W , where pixel p is the 

centre of the neighbourhood . I is the image to be reconstructed and some of the pixels in I are missing. Our 

objective is to find the best approximate values for the missing pixels in I. So let d(w1; w2) represent a 

perceptual distance between two patches that defines their similarity. The exact matching patch corresponds to 

d(w
0
; w(p)) = 0. If we define a set of these patches as (p) = f!

0
 I : d(!

0
; !(p)) = 0g the probability density function 

of p can be estimated with a histogram of all centre pixel values in (p). However we are considering a finite 
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neighbourhood for p and the searching is limited to the image area, there might not be any exact matches for a 

patch. For this reason, we find a collection of patches, which match falls between the best match and a 

threshold. The closest match is calculated as !best = argmin!d(!(p); !) I. All the patches ! with d(!(p); !) < (1 + 

)d(!(p); !best) are included in the collection !
0
. d(w

0
; w(p)) is defined as the sum of the absolute differences of the 

intensities between patches, so identical patches will result in d(w
0
; w(p)) = 0. Using the collection of patches, 

we create an histogram and select the one with the highest mode. Fig. 10 shows sample results of the 

reconstruction. The foreground F gs and the background 

The graph cut algorithm descripted in section III-B is used to separate the foreground and the 

background by minimising the energy function over the graph and producing the optimal segmentation of the 

optic disc in the image. The energy function of the graph in (4) consists of regional and boundary terms. The 

regional term (likelihoods of foreground and background) is calculated using (5), while the boundary term 

(relationship between neighbouring pixels) is derived using (6). A grid of 16 neighbours N is selected to create 

links between pixels in the image Im. The Max-Flow algorithm is used to cut the graph and find the optimal 

segmentation. 

 

C. Optic Disc Segmentation With Compensation Factor 

In contrast to MRF image reconstruction, we have incorporated the blood vessels into the graph cut 

formulation by introducing a compensation factor V ad. This factor is derived using prior information of blood 

vessel. 

The energy function of the graph cut algorithm generally comprises a boundary and regional terms. The 

boundary term defined in (6) is used to assign weights on the edges (n-links) to measure the similarity between 

neighbouring pixels with respect to the pixel proprieties (intensity, texture, colour). Therefore pixels with 

similar intensities have a strong connec-tion. The regional term in (5) is derived to define the likelihood of the 

pixel belonging to the background or the foreground by assigning weights on the edges (t-link) between image 

pixels and the two terminals background and foreground seeds. In order to incorporated the blood vessels into 

the graph cut formulation, we derived the t-link as follows: 

 

 ln Pr (IpnF gseeds) + V ad if p = vessel 
S
link 

= 
ln Pr (IpnF gseeds) if p 6= vessel 

 

The intensity distribution of  the  blood  vessel  pixels  in the region around  the  optic  disc  makes  

them  more  likely to belong to background pixels than the foreground (or the optic disc pixels). Therefore the 

vessels inside the disc have weak connections with neighbouring pixels making them likely to be segmented by 

the graph cut as background. We introduce in (13) a compensation vector to all t-links of the foreground for 

pixels belong to the vascular tree to address this behaviour. Consequently, vessels inside  the  optic  disc are 

classified with respect to their neighbourhood connections instead of their likelihood with the terminals 

foreground and background seeds. Fig. 11 shows sample of images segmented by Compensation Factor. The 

segmentation of the disc is affected by the value of V ad, the method achieves poor segmentation results for low 

value of V ad. However when the value of the V ad increases, the performance improves until the value of V ad 

is high enough to segment the rest of the vessels as foreground. 

 

IV. Results 
For the vessel segmentation method, we tested our algorithm on  two public  datasets, DRIVE  [5], 

STARE  [2] with a total of 60 images. The optic disc segmentation algorithm was tested on DRIVE [5] and 

DIARETDB1 [26], consisting of 129 images in total. The performance of both methods is tested against a number 

of alternative methods. 

The DRIVE consists of 40 digital images which were captured from a Canon CR5 non-mydriatic 

3CCD camera at 45◦ field of view (FOV). The images have a size of 768 × 584 

whereas the set B provides the manually labelled images for half of the dataset. To test our method 

we adopt the set A hand labelling as the benchmark. We manually delimited the optic disc to test the 

performance of optic disc segmentation algorithm. 

The STARE dataset consists of 20 images captured by a TopCon TRV-50 fundus camera at 35◦ FOV. 

The size of the images is 700 × 605 pixels. We calculated the mask image for this dataset using a simple 

threshold technique for each 

colour channel. The STARE dataset included images with retinal diseases selected by Hoover et al [2]. 

It also provides two sets of hand labelled images performed by two human experts. The first expert labelled 

fewer vessel pixels than the second one. To test our method we adopt the first expert hand labelling as the 

ground truth. 
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The DIARETDB1 dataset consist of 89 colour  images with 84 of them contain at  last  one  indication  

of  lesion. The images were captured with digital fundus camera at 50 degree filed of view and have a size of 

1500 × 1152 pixels. Hand labelled lesion regions are provided in this dataset by four human experts. However 

the DIARETDB1 dataset only 

includes the hand labelled ground truth of lesions but not the blood vessels and the optic disc. For  this  

reason,  we were unable to compare the performance of the blood vessel segmentation on the DIARETDB1 

dataset. Nevertheless we were able to create the hand labelled ground truth of optic disc to test the performance 

of the optic disc segmentation. 

To  facilitate  the  performance  comparison  between  our method  and  alternative  retinal  blood  vessels  

segmentation approaches, parameters such as the true positive rate (TPR), the false positive rate (FPR) and the accuracy rate 

(ACC) are derived to measure the performance of the segmentation [5].  The  accuracy  rate  is  defined  as  the  sum  of  the  

true positives  (pixels  correctly  classified  as  vessel  points)  and the true negatives (non-vessel pixels correctly identified as 

non  vessel  points),  divided  by  the  total  number  of  pixel in the images. True Positive Rate (TPR) is defined as the total  

number  of  true  positives,  divided  by  the  number  of blood vessel pixel marked in the ground true image. False Positive  

Rate  (FPR)  is  calculated  as  the  total  number  of false positives divided by the number of pixels marked as non-vessel in the 

ground true image. It is worth mentioning that a perfect segmentation would have a FPR of 0 and a TPR of 1. Our method and 

all the alternative methods used the first expert hand labelled images as performance reference. 

Most of the alternative methods use the whole image to measure the performance. In [5] all the 

experiments  are done on the FOV without  considering  the  performance  in the dark area outside the FOV. The 

method in [3] measures the performance on both the whole image and the FOV. The 

For the optic disc segmentation Tables V and VI present the performance of our method on 

DIARETDB1 and DRIVE images. The results show that our methods of using (the Compensation factor and the 

MRF image reconstruction) achieved the best overall performance. The results also show that, the MRF image 

reconstruction algorithm outperforms the Compensation factor algorithm by 2.56% and 11.5% on DIARETDB1 

and DRIVE images respectively. However it is important to notice that, the MRF image reconstruction 

algorithm depends on the  vessel  segmentation  algorithm, for example if the vessel segmentation algorithm 

achieved a low performance on severely damage retinal image, the reconstruction would not define a 

meaningful optic disc region, hence the segmentation will fail. 

Further more, the proposed method addresses one of the main issues in medical image analysis, “the 

overlapping tissue segmentation”. Since the blood vessels converse into  the optic disc area and misguide the 

graph cut algorithm through a short path, breaking the optic disc boundary. To achieve a good segmentation 

results, the MRF image reconstruction algorithm eliminates vessels in the optic disc area without any 

modification of the image structures before segmenting the optic disc. On the other hand the compensation 

factor incorporates vessels using local intensity characteristic to perform the optic disc segmentation. Thus our 

method can be applied in other medical image analysis applications to overcome “the overlapping tissue 

segmentation.” 

Our future research  will  be  based  on  the  segmentation of retinal diseases (lesions) known as 

“exudates” using the segmented structures of the retina (blood vessels and optic disc).Thus a background 

template can be created using these structures. Then  this template  can  be used  to perform  the detection of 

suspicious areas (lesions) in the retinal images. 
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