
Research Inventy: International Journal Of Engineering And Science 

Vol.4, Issue 1 (January 2014), PP 52-61 

Issn(e): 2278-4721, Issn(p):2319-6483, www.researchinventy.com 

52 

Bifurcation and Stability Analysis in Dynamics of Prey-Predator Model 

with Holling Type IV Functional Response and Intra-Specific Competition 

Vijaya Lakshmi. G.M
1
, Vijaya.  S

2
, Gunasekaran. M

3* 

1
 Department of Mathematics, Indira Institute of Engineering and Technology,Thiruvallur-631 203. 

2 
Department of Mathematics, Annamalai university, Chidambaram-608 002. 

3
 Department of Mathematics, Sri Subramaniya Swamy Government Arts College, Tiruttani-631 209. 

 

 

ABSTRACT: This paper deals with the dynamical behaviour of discrete Prey-Predator model with Holling 

type IV involving intra-specific competition. This model represents mathematically by nonlinear differential 

equations. The existence, uniqueness and boundedness solutions of this model were investigated. The locally 

asymptotic stability conditions of all possible equilibrium points were obtained. The stability/instability of 

nonnegative equilibria and associated bifurcation are investigated by analyzing the characteristic equations.  

Moreover, bifurcation diagram are obtained for different values of parameters of this model.  Finally, 

numerical simulation was used to study the global and rich dynamics of this model. 
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I. INTRODUCTION 

Discrete time models give rise to more efficient computational models for numerical simulations and it 

exhibits more plentiful dynamical behaviours than a continuous time model of the same type. There has been 

growing interest in the study of prey-predator discrete time models described by differential equations.  In 

ecology, predator-prey or plant herbivore models can be formulated as discrete time models.  It is well known 

that one of the dominant themes in both ecology and mathematical ecology is the dynamic relationship between 

predators and their prey. One of the important factors which affect the dynamical properties of biological and 

mathematical models is the functional response.  The formulation of a predator-prey model critically depends on 

the form of the functional response that describes the amount of prey consumed per predator per unit of time, as 

well as the growth function of prey [1,16]. That is a functional response of the predator to the prey density in 

population dynamics refers to the change in the density of prey attached per unit time per predator as the prey 

density changes.   

 

Two species models like Holling type II, III and IV of predator to its prey have been extensively discussed 

in the literature [2-7,10,17].  Leslie-Gower predator- prey model with variable delays, bifurcation analysis with 

time delay, global stability in a delayed diffusive system has been studied [9,13,15].  Limit cycles for a 

generalized Gause type predator- prey model with functional response, three tropic level food chain system with 

Holling type IV functional responses , the discrete Nicholson Bailey model with Holling type II functional 

response and global dynamical behavior of prey-predator system  has been revisited [8,11,12,14].  

 

The purpose of this paper is to study the dynamics of prey-predator model with Holling type IV function 

involving intra-specific competition.  We prove that the model has bifurcation that is associated with intrinsic 

growth rate.  The stability analysis that we carried out analytically has also been proved. The period-doubling or 

bifurcations exhibited by the discrete models can be attributed to the fact that ecological communities show 

several unstable dynamical states, which can change with very small perturbation. This paper is organized as 

follows:  In section 2 we introduce the model. In section 3, we obtain the equilibrium points and the local 

stability conditions of the trivial and axial equilibrium points were investigated by using Lemma (2), when the 

prey population in system (3) is subject to a Holling type IV functional response. In section 4 we analysed the 

local and dynamical behaviour of the interior equilibrium point, when the prey population in system (3) is 

subject to a Holling type IV functional response.  In section 5, we presented some numerical simulations, 

dynamical behaviour of the system and bifurcation diagrams supporting the theoretical stability results.  Finally, 

the last section 6, is devoted to the conclusion and remarks.  Diagrams are presented in Appendix. 
*gusen_dev@yahoo.com 

 

 In this paper we consider the following classical Prey- Predator system: 
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           (0), (0) 0,x y   

Where ,x y represent the prey and predator density, respectively.  ( ) and ( )p x q x  are so-called predator  and 

prey functional response respectively.  ,  0    are the conversion and predator`s death rates, respectively.  If 

( )
mx

p x
a x




 refers to as Michaelis-Menten function or a Holling type – II function, where 0m   denotes 

the maximal growth rate of the species, 0a   is half-saturation constant.   Another class of response function 

is Holling type-III 

2

2
( )

mx
p x

a x



 .  In general the response function ( )p x  satisfies the general hypothesis: 

(A) ( )p x  is continuously differentiable function defined on  0,  and satisfies (0) 0,p 
|( ) 0p x  , and 

lim ( ) .
x

p x m


   The inherent assumption in (A) is that ( )p x  is monotonic, which is true in many 

predator-prey interactions.  However, there is experimental and observational evidence that indicates that this 

need not always be the case, for example, in the cases of “inhibition” in microbial dynamics and “group 

defence” in population dynamics.  To model such an inhibitory effect, Holling type-IV function  

2
( )

mx
p x

a x



 found to be fit and it is simpler since it involves only  two parameters.  The Holling type – IV 

function otherwise known as Monod-Haldane function which is used in our model.  The simplified Monod-

Haldane or Holling type- IV functional is a modification of the Holling type-III function [11].  In this paper, we 

focus on prey-predator system with Holling type –IV by introducing intra-specific competition and establish 

results for boundedness, existence of a positively invariant and the locally asymptotical stability of coexisting 

interior equilibrium. 

 

II. THE MODEL 
 The prey-predator systems have been discussed widely in many decades.  In literature many studies 

considered the prey-predator with functional responses. However, considerable evidence that some prey or 

predator species have functional response because of the environmental factors. It is more appropriate to add the 

functional responses to these models in such circumstances. For instance, a system suggested in Eqn.(1), where 

( )x t and ( )y t  represent densities or biomasses of the prey species and predator species respectively; ( )p x  

and ( )q x  are the intrinsic growth rates of the predator and prey respectively; ,     are the death rates of prey 

and predator respectively. 

 

If  
2

( )
1

mx
p x

x



 and  ( ) 1q x ax x   , in ( )p x  assuming 1a   in general function,  that is where 

a is the  half-saturation constant  in the Holling type IV functional response, then Eq.(1) becomes  

 

  2

2

     1
1

                                              (2)

1

dx my
x a x

dt x

dy mx
y

dt x





  
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Here , , ,a m   are all positive parameters. 

Now introducing intra-specific competition, the Eq.(2) becomes 
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                                                 (3)                                
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with (0), (0) 0x y   and , , , , , ,m a b e    are all positive constants. 

Where a is the intrinsic growth rate of the prey population;   is the intrinsic death rate of the predator 

population; b  is strength of intra-specific competition among prey species;   is strength of intra-specific 

competition among predator species; m  is direct measure of predator immunity from the prey;   is maximum 

attack rate of prey by predator and finally e  represents the conversion rate. 

 

III. EXISTENCE AND LOCAL STABILITY ANALYSIS WITH PERSISTENCE 
  In this section, we first determine the existence of the fixed points of the differential equations (3), and 

then we investigate their stability by calculating the eigen values for the variation matrix of (3) at each fixed 

point.   To determine the fixed points, the equilibrium are solutions of the pair of equations below: 

 

2

2

  0
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By simple computation of the above algebraic system, it was found that there are three nonnegative fixed points: 

 

(i)  0 0,0E  is the trivial equilibrium point always exists. 

(ii) 1 ,0
a

E
b

 
  
 

 is the axial fixed point always exists, as the prey population grows to the carrying capacity in 

the absence of predation. 

(iii)  * *

2 ,E x y  is the positive equilibrium  point exists in the interior of the first quadrant if and only if 

there is a positive solution to the following algebraic nonlinear equations 

 

We have the polynomial form of five and three degrees. 

 
* 5 4 3 2

5 4 3 2 1 0

* 3 2

3 2 1 0

x B x B x B x B x B x B

y A x A x A x A

     

   
                            (5)  

Where  

5 4 32 2 2 2 2 2

2
, , ,

b a b
B B B

e m e m e m  

 
   2 1 02 2 2 2 2 2

2
, ,

a d b a d
B B B

e m e m e m e m e m    


      

and 

3 2 1 0, , ,
b a b a

A A A A
m m m m   

 
     

 

Remark 1:  There is no equilibrium point on y axis as the predator population dies in the absence of its prey. 

 

Lemma: For all parameters values, Eqn.(3) has fixed points, the boundary fixed point and the positive fixed 

point  * *,x y  , where  
* *,x y  satisfy 
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Now we study the stability of these fixed points.  Note that the local stability of a fixed point  ,x y  is 

determined by the modules of Eigen values of the characteristic equation at the fixed point.  

The Jacobian matrix J of the map (3) evaluated at any point  ,x y  is given by  

11 12

21 12

( , )                                                                   (7)                                
a a

J x y
a a
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and the characteristic equation of the Jacobian matrix  ,J x y  can be written as  

   2 , , 0p x y q x y    , 

 Where  

   11 22,p x y a a   ,               11 22 12 21,q x y a a a a  . 

In order to discuss the stability of the fixed points, we also need the following lemma, which can be easily 

proved by the relations between roots and coefficients of a quadratic equation. 

Theorem:  Let
2( )F P Q     . Suppose that  1 0F   , 1 2,   are two roots of ( ) 0F   .  Then 

(i) 1| | 1   and 2| | 1   if and only if  1 0F    and 1Q  ; 

(ii) 1| | 1   and 2| | 1   (or  1| | 1   and 2| | 1  ) if and only if  1 0F   ; 

(iii) 1| | 1   and 2| | 1   if and only if  1 0F    and 1Q  ; 

(iv) 1 1    and 2| | 1   if and only if  1 0F    and 0,2P  ; 

(v) 1  and 2 are complex and 1| | 1   and 2| | 1   if and only if 
2 4 0P Q   and 1Q  . 

Let 1  and 2  be two roots of ( ), which are called Eigen values of the fixed point  ,x y .  We recall some 

definitions of topological types for a fixed point  ,x y .  A fixed point  ,x y is called a sink if  1| | 1   and 

2| | 1  , so the sink is locally asymptotic stable.   ,x y  is called a source if 1| | 1   and 2| | 1  , so the 

source is locally un stable.   ,x y  is called a saddle if 1| | 1   and 2| | 1   (or  1| | 1   and 2| | 1  ).  And 

 ,x y  is called non-hyperbolic if either  1| | 1   and 2| | 1  .   

 

Proposition 1:  The Eigen values of the trivial fixed point  0 0,0E   is locally asymptotically stable if 

, 1a    (i.e.,) 0E  is sink point, otherwise unstable if , 1a   , and also 0E  is saddle point if 1,  1a   , 

0E  is non-hyperbolic point if 1,  1a   . 
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Proof:  In order to prove this result, we estimate the Eigen values of Jacobian matrix J at  0 0,0E  .  On 

substituting  ,x y  values in (7) we get the Jacobian matrix for 0E   

0

0
(0,0)                                                                         

0

a
J



 
  

 
 

Hence the Eigen values of the matrix are 1 2=a, =-                             

Thus it is clear that by Theorem, 0E  is sink point if  1,2| | 1   , 1a   , that is 0E  is locally 

asymptotically stable. 0E  is unstable (i.e.,) source if 1,2| | 1  , 1a   . 

And also 0E  is saddle point if 1 2| | 1,  | | 1   1,  1a    , 0E  is non-hyperbolic point if 

1 2| | 1 or | | 1   1  or 1a    . 

Proposition 2:  The fixed point 1 ,0
a

E
b

 
  
 

 is locally asymptotically stable, that is sink if 

2 2
1,  

em
a

a b


 


; 1E  is locally unstable, that is source if 

2 2
1,  

em
a

a b


 


; 1E  is a saddle point if 

2 2
1,  

em
a

a b


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
and 1E  is non-hyperbolic point if either 1a  or 

2 2
1

em

a b


  


. 

Proof:  One can easily see that the Jacobian matrix at 1E  is 

 

2 2

1

2 2

,0                                                                         

0

am
a

a a b
J

aemb

a b






 
   

   
    
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Hence the Eigen values of the matrix are  

 

  1 2 2 2
| |= ,  | |=                                                                        

aem
a

a b


  


 

By using Theorem, it is easy to see that, 1E  is a sink if 
2 2

1  and 
em

a
a b


 


; 1E  is a source if 

2 2
1  and  

em
a

a b


 


; 1E  is a saddle  if

2 2
1  and 

em
a

a b


 


; and 1E  is a saddle  if either 1a  or 

2 2
1

em

a b


  


. 

 

Remark 2:  If 
2

2 2( ) ( ) 0Tr J Det J    , then the necessary and sufficient condition for linear stability 

are 2 2( ) 0  and  ( ) 0Tr J Det J  . 

4.  Local Stability and Dynamic Behaviour around Interior Fixed Point 2E  

Now we investigate the local stability and bifurcations of interior fixed point 2E .  The Jacobian matrix at 2E  is 

of the form  
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Its characteristic equation is  
2

2 2( ) ( ) ( ) 0F Tr J Det J       where Tr is the trace and Det  is the 

determinant of the Jacobian matrix 2( )J E  defines in Eq.(8), where 

 
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2
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2 1 22 *
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and         
 
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2 2 * * *
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e m x y x
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By Remark 2,  2E  is stable if 1 2G G 0   and 1 2 3G .G G 0   that is  

2E  is stable if 

 

 

2

2
2

* *

* *

2*
*

1
  2 2    <                                                               

1 1

my xe mx
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x x


 


   

 
       (9) 

and 

 

      

     

4 2

2 2

3
* * * * *

2
* * * * *

2 1 2 1

                                                               

2 1 1 2

y my x a bx x

e

mx my x x a bx

  

 

 
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  
 

   
  

     (10) 

If both equations (9) and (10) are satisfied, then the interior equilibrium point will be stable. 

 

IV. NUMERICAL SIMULATION 
 In this section, we undertake the numerical simulations of the prey-predator system (3) for the case 

when there is intra-specific competition with Holling type IV functional response.  In the sequel, we plot 

diagrams for the prey system, the trivial and axial equilibrium points and also we present the bifurcation 

diagrams of the model (3) that have been obtained with data from 500 iterations with time-step of 0.005 units. 

The bifurcation diagrams are presented with the presence of predator and in the absence of predator. The plots 

have been generated using MATLAB 7. The prey-predator system with Holling type IV functional response 

and intra-specific competition exhibits a variety of dynamical behaviour in respect of the population size.  The 

population shows several equilibrium states, and for certain higher values of the parameters there can be infinite 

number of such possibilities so far as the population size is concerned. This implies that for a particular species, 

if the intrinsic growth rate is high, in the presence of a high intra-specific competition, there is a possibility that 
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it will show sudden spurts or drops (fig 2) in the population for seemingly minute changes in environmental 

conditions. The dynamics vary from steady (equilibrium) state to chaotic through a hierarchy of bifurcations. 

This chain of dynamics is exhibited in the bifurcation diagram of prey system x  (Fig.6-10)  for the different 

values of a (intrinsic growth rate). 

Fig. 1.  Shows a plot for prey equation when a=0.04; b=0.4; e=0.75; m=0.75; Fig.2 and Fig.3 Shows that 

sudden spurts or drops and a line diagram at the equilibrium point  0 0,0E   is local asymptotically stable, if 

a=0.9,  =0.7, then the Eigen value becomes | 1 |=0.9 and | 2 |=0.7, which implies 1,2| | 1  , that is 0E  is 

local asymptotically stable. Fig.4 Shows the diagram at the equilibrium point 1 ,0
a

E
b

 
  
 

 is local 

asymptotically stable, if a=0.9, b=0.2, α=0.5, m=0.75, e=0.75,  =0.01,  =0.01, then the Eigen value becomes 

| 1 |=0.9 and | 2 |=0.0496, which implies 1,2| | 1  , that is 1E  is local asymptotically stable. Fig.5 Shows the 

diagram at the equilibrium point 1 ,0
a

E
b

 
  
 

  is  un stable,  if a=4,  b=0.9,  α=0.5,  m=0.75,  e=0.75,  =0.01, 

 =0.01, then the Eigen value becomes | 1 |= 4 and | 2 |= 0.0502, which implies 1 2| | 1,  and | | 1   , (i.e.,) 

1E  is un stable. 

 

Fig.6 (See appendix) Shows that there is no period-doubling bifurcation for intrinsic growth rate a=0 to 

2, with only one predator  and Fig.7 shows the bifurcation that bifurcates 2 cycles when the intrinsic growth 

rate=3  with one predator  and the prey population bifurcates 4 cycles at  3.5.  Fig.8  shows when intrinsic 

growth rate=0 to 4 with one  predator,  the prey population bifurcate 2 cycle at a=3 and bifurcate 4 cycles at 

a=3.5 and chaos after a= 3.5 that is increasing the parameters effectively makes the bounds on the system tighter 

and pushes it from stability towards unstable behaviour. This unstability manifests itself as a period-doubling 

bifurcation as a result of which the single equilibrium level of the population splits into two and the population 

starts oscillating between two levels which are quite different in their relative magnitudes. As we keep on 

increasing the parameters, these levels individually split up more and more frequently, until all order is lost and 

we found an infinite number of possible equilibrium states visited by the population. At this point, the 

population behaviour seems to lose any stablility.  This appearance of nonperiodic behaviour from equilibrium 

population levels may be referred to as the “period-doubling route to chaos”, the non periodic dynamics being 

described as chaotic(Fig.8). 

Fig.9 shows when the  intrinsic growth rate 0 to 3.5 in the absence of predator bifurcates 2 cycles 

if 3a  . Fig.10 shows when intrinsic growth rate= 0 to 4, prey population bifurcates 2 cycles if 3a  and 

bifurcates  4 cycles if 3.5a  and if 3.7a  prey population behaves like chaos. 

 

V. CONCLUSION 
 In this paper, we investigated the complex behaviours of  two species prey- predator system as a 

discrete-time dynamical system with Holling type IV functional response and intra-specific competition in the 

closed first quadrant,  and showed that the unique positive fixed point of system (3) can undergo bifurcation and 

chaos.  Bifurcation diagrams have shown that there exists much more interesting dynamical and complex 

behaviour for system (3) including periodic doubling cascade, periodic windows and chaos. All these results 

showed that for richer dynamical behaviour of the discrete model (3) under periodical perturbations compared to 

the continuous model.  The system is examined via the techniques of local stability analysis of the equilibrium 

points from which we obtain the bifurcation criterion.   

 

The numerical simulation of the population size shows a succession of period-doubling bifurcations 

leading up to chaos.  The effect of intra-specific competition with Holling type IV functional response on the 

model depends on the value of the intrinsic growth rate.  For values corresponding to the stable system 

dynamics, the population undergoes a linear change.  However, for values of the intrinsic growth rate which 

makes the system dynamics bifurcates.  It may thus be concluded that the stability properties of the system could 

switch with the Holling type IV functional response with intra-specific competition that is incorporated on 

different densities in the model. 
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Appendix: 
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