
Research Inventy: International Journal Of Engineering And Science

Vol.2, Issue 10 (April 2013), Pp 53-57
Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com

53

Fair Scheduling Algorithm with Dynamic Load Balancing

Using In Grid Computing

1
Mr.V. P. Narkhede,

2
Prof. S. T. Khandare

1Lecturer , Department Of IT, Anuradha Engineering College, Chikhli, India
2Associate Professor, Department Of CSE, B.N.C.O.E., Pusad, India

Abstract : Grid computing is new emerging technology which can be used to increase the performance of

Distributed Computing. It has emerged a new technology focusing on the resource sharing, utilizing

parallelism, and exploiting throughput managing and to reduce response time through proper distribution of the

application. Grid computing is a replica of distributed computing that uses geographically and disperses

resources. To increase performance and efficiency, the Grid system needs competent load balancing algorithms

for the distribution of tasks. The main goal of load balancing is to provide a distributed, low cost scheme that

balances the load across all the processors. In this seminar, the algorithm describes multiple aspects of load

balancing algorithm and introduced number of concepts which explains its broad capabilities. It also fulfils the

objectives of the grid environment to achieve high performance computing by optimal usage of geographically

distributed and heterogeneous resources.

Keywords: Grid Computing, Reliability, Resources etc.

I. INTRODUCTION
The rapid development in computing resources has enhanced the performance of computers and

reduced their costs. This availability of low cost powerful computers coupled with the popularity of the Internet

and high-speed networks has led the computing environment to be mapped from distributed to Grid

environments. In fact, recent researches on computing architectures are allowed the emergence of a new

computing paradigm known as Grid computing. Grid is a type of distributed system which supports the sharing

and coordinated use of geographically distributed and multi owner Resources , independently from their

physical type and location, in dynamic virtual organizations that share the same goal of solving large-scale

applications. In order to fulfil the user expectations in terms of performance and efficiency, the Grid system

needs efficient load balancing algorithms for the distribution of tasks. A load balancing algorithm attempts to

improve the response time of user’s submitted applications by ensuring maximal utilization of available
resources. The main goal is to prevent, if possible, the condition where some processors are overloaded with a

set of tasks while others are lightly loaded or even idle[1,4].

Grid computing, individual users can retrieve computers and data, transparently, without taking into

account the location, operating system, account administration, and other details. In Grid computing, the details

are abstracted, and the resources are virtualized. Grid Computing should enable the job in question to be run on

an idle machine elsewhere on the network. Grids functionally bring together globally distributed computers and

information systems for creating a universal source of computing power and information. A key characteristic of

Grids is that resources (e.g., CPU cycles and network capacities) are shared among various applications, and

therefore, the amount of resources available to any given application highly fluctuates over time. Load balancing

is a technique to enhance resources, utilizing parallelism, exploiting throughput improvisation, and to reduce
response time through an appropriate distribution of the application . Load balancing algorithm are two type

static and dynamic, Static load balancing algorithms allocate the tasks of a parallel program to workstations

based on either the load at the time nodes are allocated to some task, or based on an average load of our

workstation cluster. The decisions related to load balance are made at compile time[2,3].

II. DYNAMIC LOAD BALANCING
 Load balancing is a technique to enhance resources, utilizing parallelism, exploiting throughput

improvisation, and to reduce response time through an appropriate distribution of the application. Load

balancing algorithms can be defined by their implementation of the following policies [1]:

 Information policy: It states the workload of task information to be collected, when it is to be collected and

from where.

Fair Scheduling Algorithm With Dynamic...

54

 Triggering policy: It determines the appropriate period to start a load balancing operation.

 Resource type policy: It orders a resource as server or receiver of tasks according to its availability status.

 Location policy: It uses the results of the resource type policy to find a suitable partner for a server or

receiver.

 Selection policy: defines the tasks that should be migrated from overloaded resources (source) to most idle

resources (receiver).

Load balancing algorithms are defined by two types such as static and dynamic load balancing algorithms to

allocate the tasks of a parallel program to workstations. Multicomputer with dynamic load balancing allocate or

reallocate resources at runtime based on task information, which may determine when and whose tasks can be

migrated. In this seminar Dynamic Load Balancing Algorithm is implemented to multicomputer based on

resource type policy [1]. Load balancing feature can prove invaluable for handling occasional peak loads of

activity in parts of a larger organization. These are important issues in Load Balancing [1,4]:

• An unexpected peak can be routed to relatively idle machines in the Grid.

• If the Grid is already fully utilized, the lowest priority work being performed on the Grid can be temporarily

suspended or even cancelled and performed again later to make room for the higher priority work.

Load balancing should take place when the scheduler schedules the task to all processors. There are some

particular activities which change the load configuration in Grid environment. The activities can be categorized

as following:

• Arrival of any new job and queuing of that job to any particular node.

• Scheduler schedules the job to particular processor.

• Reschedule the jobs if load is not balanced

• Allocate the job to processor when it’s free.

• Release the processor after it complete the whole job

III. LOAD BALANCING APPROACHES
Load balancing problem has been discussed in traditional distributed systems literature for more than

two decades. Various algorithms, strategies and policies have been proposed, implemented and classified.

 Algorithms can be classified into two categories: static or dynamic.

3.1 Static Load Balancing Algorithm

Fig.3.2: Static Load Balancing

Static load balancing algorithms allocate the tasks of a parallel program to workstations based on either

the load at the time nodes are allocated to some task, or based on an average load of our workstation cluster. The

decisions related to load balance are made at compile time when resource requirements are estimated. The

advantage in this sort of algorithm is the simplicity in terms of both implementation as well as overhead, since

there is no need to constantly monitor the workstations for performance statistics. However, static algorithms

only work well when there is not much variation in the load on the workstations. Clearly, static load balancing

algorithms aren’t well suited to a Grid environment, where loads may vary significantly at various times [1,2,4].

Fair Scheduling Algorithm With Dynamic...

55

3.2 Dynamic Load Balancing Algorithm

Fig.3.3: Dynamic Load Balancing

Dynamic load balancing algorithms make changes to the distribution of work among workstations at

run-time; they use current or recent load information when making distribution decisions. Multicomputers with
dynamic load balancing allocate/reallocate resources at runtime based on no a priori task information, which

may determine when and whose tasks can be migrated. As a result, dynamic load balancing algorithms can

provide a significant improvement in performance over static algorithms. However, this comes at the additional

cost of collecting and maintaining load information, so it is important to keep these overheads within reasonable

limits [1,2,4].

IV. SCHEDULING AND LOAD BALANCING
4.1 Fair Scheduling

 The scheduling algorithms do not adequately address congestion, and they do not take fairness

considerations into account. Fairness is most essential for scheduling of task. In Fair Scheduling, the tasks are

allocated to multiple processors so that the task with unsatisfied demand get equal shares of time is as follows :

• Tasks are queued for scheduling according to their fair completion times.

• The fair completion time of a task is estimated by its fair task rates using a max min fair sharing algorithm.

• The tasks are assigned to processor by increasing order of fair completion time.

In this algorithm, tasks with a higher order are completed first which means that tasks are taken a higher priority

than the others which leads to starvation that increases the completion time of tasks and load balance is not
guaranteed. For this issue we propose a Load Balance (LB) Algorithm to give uniform load to the resources so

that all tasks are fairly allocated to processor based on balanced fair rates. The main objective of this algorithm

is to reduce the overall make span [1,5,6].

4.2 Segment Of Code related to Algorithm

Input: A set of N task and M number of processor with computational capacity Cj

Output: A Schedule of N tasks

1. Create a set of queues

2. qsize < N/M
3. For each queue qi in Q

4. While there are tasks in the queue do,

5. Assign demand rate of the task Xi

6. k=C/N

7. If Xi <k

8. Assign Xi to ith task as fair rate

9. Else

10. Assign k to ith task as fair rate

11. Calculate fair completion time ti(x)

12. End while

13. End loop
14. Arrange the task in increasing order based on their ti(x) and submitted to processor

15. While (Load of any processor is greater than average load processor)do

16. Calculate mean waiting time each scheduled task

Fair Scheduling Algorithm With Dynamic...

56

17. If Zx
y >0

18. Migrated tasks are determined by using criteria of processor capacity

19. Each processor which has least capacity is selected for migration

20. End If

21. End While

V. RESULTS AND DISCUSSION
When we started a work on our project, our main aim was to evaluate performance of various resources

with various scenarios, the concept lies when evaluating performance is to have various scheduling algorithm

and various resources with different characteristics. As the grid has become very popular in its short period of its

emergence, the usage of performing scheduling operation is not up to the mark because the scheduling process

exists as of now is only minimal i.e., when anyone trying to perform a operation he should make the system or
scheduler to know the jobs which it has to be scheduled in advance. So this is not a permanent solution in this

kind of environment. After having done a extreme literature survey we have started working on evaluating

performance of the system with various scheduling algorithms such as FCFS, Earliest Deadline First, Easy Back

filling and so on., our work is not only performing scheduling process though evaluating the performance is the

major issue in our project but before that we have found a way to create a Jobs and Resource, after creating Jobs

and resource with various characteristics, these has been used as the input for our processing. Finally each and

every jobs has been given to the resources in order of not keeping any of machines idle i.e., jobs will be

allocated to the machines based on their availability.

The GridSim toolkit provides a comprehensive facility for simulation of different classes of

heterogeneous resources, users, applications, resource brokers, and schedulers. It can be used to simulate
application schedulers for single or multiple administrative domains distributed computing systems such as

clusters and Grids. Application schedulers in the Grid environment, called resource brokers, perform resource

discovery, selection, and aggregation of a diverse set of distributed resources for an individual user. This means

that each user has his or her own private resource broker and hence it can be targeted to optimize for the

requirements and objectives of its owner. In contrast, schedulers, managing resources such as clusters in a single

administrative domain, have complete control over the policy used for allocation of resources. This means that

all users need to submit their jobs to the central scheduler, which can be targeted to perform global optimization

such as higher system utilization and overall user satisfaction depending on resource allocation policy or

optimize for high priority users.

VI. CONCLUSION
This algorithm has proved the best results in terms of makespan and Execution Cost In particular the

algorithm allocates the task to the available processors so that all requesting task get equal amount of time that

satisfied their demand. Through this proposed algorithm, we have described multiple aspects of load balancing

algorithm and introduced numerous concepts which illustrate its broad capabilities. Proposed algorithm is

definitely a promising tendency to solve high demanding applications and all kinds of problems. Objective of

the grid environment is to achieve high performance computing by optimal usage of geographically distributed

and But grid application performance remains a challenge in dynamic grid environment. Resources can be

submitted to Grid and can be withdrawn from Grid at any moment.

VII. ACKNOWLWDGMENT

I am highly grateful to Prof. S. T. Khandare , for his sincere advice, encouragement and continuous

guidance in my work. I warmly acknowledge and express my special thanks for him inspiring discussions and

infallible suggestions.

REFERENCES
[1] U. Karthick Kumar, “A Dynamic Load Balancing Algorithm in Computational Grid Using Fair Scheduling, International

Journal Of Computer Science and Informatics Vol. 8, Issue 5, No 1, September 2011 ISSN (Online): 1694-0814.

[2] Dr. K. Vivekanandan, D.Ramyachitra, “A Study on Scheduling in Grid Environment”, International Journal on Computer

Science and Engineering (IJCSE), ISSN : 0975-3397 Vol. 3 No. 2 Feb 2011.

[3] Sachin Kumar, Niraj Singhal, “ A Priority based Dynamic Load Balancing Approach in a Grid based Distributed Computing

Network”, International Journal of Computer Applications (0975 – 8887) Volume 49– No.5, July 2012 11

[4] Pawandeep Kaur, Harshpreet Singh, “Adaptive dynamic load balancing in grid computing an approach,”International journal of

engineering science & advanced technology , ISSN: 2250–3676 Volume-2, Issue-3, 625 – 632, May-Jun 2012.

[5] R.Gogulan, A.Kavitha, U.Karthick Kumar, “Max Min fair scheduling algorithm using in grid scheduling with load balancing”,

International Journal of Research in Computer Science eISSN 2249-8265 Volume 2 Issue 3 (2012) pp. 41-49.

[6] Prabhat Kr. Srivastava, “Improving Performance in Load Balancing Problem on the Grid Computing System”, International

Journal of Computer Applications (0975 – 8887) Volume 16– No.1, February 2011

Fair Scheduling Algorithm With Dynamic...

57

[7] Qin Zheng Chen-Khong Tham Bharadwaj Veeravalli, “Dynamic Load Balancing and Pricing Dynamic Load Balancing and

Pricing in Grid Computing with Communication Delay, November 2, 2010

[8] Belabbas Yagoubi and Yahya Slimani, “Dynamic Load Balancing Strategy for Grid Computing,” Journal of Information

Technology and Applications Vol. 1 No. 4 Mar ch,2007, pp. 285-296.

[9] Belabbas Yagoubi and Yahya Slimani, “Dynamic Load Balancing Strategy for Grid Computing,” World Academy of Science,

Engineering and Technology 19 2006.

[10] A book ,“An introduction to grid computing”, By Bart Jacob, Michael Brown, Kentaro Fukui, Nihar Trivedi, IBM/Redbooks

December 2005.

