Research Inventy: International Journal Of Engineering And Science
Vol.2, Issue 10 (April 2013), Pp 18-22
Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com

Existence Of Solutions For Nonlinear Fractional Differential
Equation With Integral Boundary Conditions

L.Azhaar H. Sallo , % Afrah S. Hasan

12 Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan Region, Iraq.

Abstract. In this paper we discuss the existence of solutions defined in C [0,T ] for boundary value problems

for a nonlinear fractional differential equation with a integral condition. The results are derived by using the
Ascoli-Arzela theorem and Schauder-Tychonoff fixed point theorem.
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l. INTRODUCTION

Fractional boundary value problem occur in mechanics and many related fields of engineering and
mathematical physics, see Ahmad and Ntouyas [2], Darwish and Ntouyas [4], Hamani, Benchohra and Graef
[6], Kilbas, Srivastava and Trujillo [7] and references therein. Various problems has faced in different fields
such as population dynamics, blood flow models, chemical engineering and cellular systems that can be
modeled to a nonlinear fractional differential equation with integral boundary conditions. Recently, many
authors focused on boundary value problems for fractional differential equations, see Ahmad and Nieto [1],
Darwish and Ntouyas [4] and the references therein. Some works has been published by many authors on
existence and uniqueness of solutions for nonlocal and integral boundary value problems such as Ahmad and
Ntouyas [2] and Hamani, Benchohra and Graef [6].

In this paper we prove the existence of the solutions of a nonlinear fractional differential equation with
an integral boundary condition at the right end point of [0,T Jin C [0,T ], where C [0, T ] is the space of

all continuous functions over [O,T ],which results are based on Ascoli-Arzela theorem and Schauder-
Tychonoff fixed point theorem.

1. PRELIMINARIES
In this section we introduce definitions, lemmas and theorems which are used throughout this paper.
For references see Barrett [3], Kilbas, Srivastava and Trujillo [7] and references therein.

Definition 2.1. Let f be a function which is defined almost everywhere on [a, b] .For & > 0, we define:

S e
°D f_l“(a)if ) (b —t)"dt

provided that this integral exists in Lebesgue sense, where I is the gamma function.
Lemma 2.2. Assume that f €C (0,1) m L (0,1) with a fractional derivative of order & > O that belongs

to C (0,1) "L (0,1), then
DD f(t)=fE)+Ct " +Ct*? +..+Ct*"

for some Ci € R ;i=1,2, ..., n, where n is the smallest integer greater than or equal to ¢ .
Lemma23.Let o, B € R, B > —1.1f x > a,then
L+a
X —a . .
« (x —a)” —a)” ( ) ;a + [ # negative integer

=< TI'(ad+ 4 +1)
B+ _ _ .
;a + [ =negative integer

Lemma 2.4. The following relation *D ™ XD ~f =*D D holds if
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a.a > 0, f>0 andthe function f (X) €C on aclosed interval [@,D].
b. <0 or @+Nn >0, >0 andthe function T (X ) €C ™ onaclosed interval [a, 0]

Lemma2.5. If @ > Oand f (X) is continuous on [a, b] , then ;(Dfa f (X) exists and it is continuous
with respect tox on [@,D].

Theorem 2.6. (The Arzela Ascoli Theorem)

Let F bean equicontinuous, uniformly bounded family of real valued functions f on aninterval | (finite or
infinite). Then | contains a uniformly convergent sequence of function fn, converging to a function
f eC (| )Where C (| ) denotes the space of all continuous bounded functions on | . Thus any sequence in

F contains a uniformly bounded convergent subsequence on | and consequently F hasa compact closure in
c(l).

Theorem 2.7. (Shauder-Tychnoff Fixed Point Theorem)

Let B be a locally convex, topological vector space. Let Y bea compact, convex subset of Band T a
continuous map of Y intoitself. Then T has a fixed point Y ey .

1. MAIN RESULT
The statements and proofs for the main results are carried out in this section.

Lemma3.1. Let f (t, X(t)) and h(t, X(t)) belong to C[0,T], and 1<« < 2, then the solution of

Dx (t)=f [t,x(t),]h(t,r,x(r))dr] ., te(0,T) (31
x“?(0)=0 (32)
X“H(T) = af[ x(r)dz 33)

Where 77 € (0, T) and a is a constant, is given by
ta—l T

x(t)= H—F(a)-([

at*™
[a+1)(0-T(a)

f(t, x(t),_T[h(t, 7, x(z))d7) dt — )T(n — ) f (z, x(2),

:[h(r, s, x(s))ds)dz + ﬁi (t— )" f (r, x(7). i h(zs, x(s))ds]dr

Where 0 = 277“ and 0 #I'().
Proof. Operate both sides of equation (3.1) by the operator D ™, to obtain

DD“x (t)=Df (t,x (t ),Tj'h(t,r,x ())d rj
From Lemma (2.1), we get i

X (t)=Ct“ +Ct*?+Df [t,x (t),Tjh (t.z,x (r))d rj (3.4)
0
Now, operate both sides of equation (3.4) by the operator D “1 {0 have
D*x (t)=D*'Ct“'+D*'Ct“?+D“'D “f (t X (t ),Tjh (t,z,x (z))d Tj (35)
0

From Lemma (2.2) and Lemma (2.3), D“*Ct“* =CI'(ar), D*'Ct“* =0 and
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T T
DD f [t, X(t),jh(t,r,x(r))drj: D f [t,x(t),jh(t,r, X(T))dz'j
0 0
Therefore equation (3.5) can be written as

D! (t)=CI(a)+,Df (t,x (t),].h(t,r,x (z))d TJ (3.6)

Now, operating on both sides of equation (3.4) by the operator D “2 and using again Lemma (2.2) and Lemma
(2.3), equation (3.4) takes the form

D*?x (t)=C,I'(a)t +C,I(@-1)+,D’f [t,x (t),Tjh(t,r,x ())d rj (3.7)

Now from the condition (3.2) and equation (3.7), it follows that C, = 0, and from the condition (3.3) and
equation (3.6) we get

aj' x(r)dr =C,['(a) +} f [t, x(t),_T[h(t,r, x(r))dr]dt

acjz-“‘ldz-+ a ﬁ(r—s)“‘lf [s, x(s),]h(s, z,x(z))dzjdsdr :Cll“(a)+} f (t, x(t),]‘h(t,z-, x(r))dr}dt

[(@) 95
1 T T n T
C = 0-T(a) |:'(|). f (t,X(t),_([h(t,z‘, X(T))dr]dt_r(aa+1) 2[(77_1)0! f (r,x(z'),-([h(r,s, X(S))dsjdz}

a a
Where 6 = —7] and @ = I'(ax), therefore the solution of the given boundary value problem takes the form

ta—l T T ata—l

!f(t,x(t),.([h(t,r,X(T))dT)dt_ e 1)(9—r()

j (t—7)*f (r X j h(z,s, x(s))dsjdr

j (n-7)" f (7, x(@),

j h(z,s, x(s))ds)dr+

Theorem: Assume that f (t, X(t)) and h(t, X( )) belong to C[0,T], then the fractional boundary value
problem (3.1-3) has a unique solution on [0,T].

Proof: Let X ={X (t);X (t) €C [0, T ]} and the mapping T 'C[O T] —)C[O,T] defined by

™M)= t_l [[ f(t, x(t)jh(trx(r))dr)dt— 2 1)]:(77—2')“

f(z, x(r),!h(z-, s, X(s))ds)d r} +%£(t —7) (s, x(r),ih(r, S, X(s))ds)dz (3.8)

in order to apply the Schauder-Tychonoff fixed point theorem, we should prove the following steps
Stepl: T maps X into itself.
Let X € X , since f s continuous on [O,T] , it guarantees that all the terms on (3.8) are continuous. Thus

T maps Y into itself
Step2: T is a continuous mapping on X .

Let {Xn (t)}c:zl be a sequence in X such that limx_ (t) =X (t) where X (t) €C [O,T ] consider
ITx, ) -Tx )| =

Hg%l(){f(f (t,x (t),lh(t,f,xn(r))dr— f(t,x(t),lh(t,r,x(f))df)dt

20



Existence Of Solutions For Nonlinear Fractional Differentia/...

_r(aa 1)-]7'(77 —7)[f(z,X, (r),]h(r, s, X (s))ds) —f (z, x(r),lh(r,s, x(s))ds)dr]}

(3.9)

(1jt 2L (2%, (2),[1(z.5.%,(9)ds) - F (7.X(2), [ (2,5, X(5)) ds)]d 2

O

the right hand side of the equation (3.9) tends to zero as n tends to infinity, since f is a continuous function
and the sequence {Xn (t)}:;l convergesto X (t), that is

‘ Xn('[)—X(t)‘—)O as N — o0
Also since  is bounded hence by Lebesgue's dominated convergence theorem we have

H Tx (t) —Tx(t) H —>0 asn—ow

therefore T is a continuous mapping on X .

Step3: The closureof TX ={TX (t) ; X (t) € X } is compact.

To prove step3 we will prove that the family TX is uniformly bounded and equicontinuous. TX is uniformly
bounded as shown in stepl, for proving the equicontinuity, let t1 € (0 T] such that t1 < t2 , then

ta—l
Tx(t,) —Tx(t,)| = 0T )_[f(t x(t)jh(t 7,x(7))d7)dt,
at“
r(a+1)(e (@))%

j(t — )" f (7, x(7), _[h(z' s, x(s))ds)dz

j(n—r) f (z, x(2), jh(r s, x(s))ds)dz

F()

0 trl( )If(th(t) Ih(t, 7 x(2)do)dt,

at” ™
F(a +1)(6’ I'(x)) %

j (t, —7)* f (7,x(), j h(z,s, x(s))ds)dz

j(n—r) f (7, x(7), jh(r s, x(s))ds)dr

By continuity of OI;EO,)T] there exists a positive constant M such that
X0l tr( y{ Mt — r(a+§(te r(a)? J =0y Mdz
e ot
F(a+1?(tl;l I'(« ))I(" T)aMdT——I(tl 7)“*Mdr
_‘0 MF-E ) G-t - I (cx +1§1(I;/I_r(a» (G —tfl)z(n —7)*dr
r( )[f t, - )“df—ll(tl—r)“d 7]
‘9 I'(a) (G-t~ I'(a +a2'\)/l(ga: (@) " -t
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+%[tjmz ), — ) dr +I(t2 —)ide]

— MT t;x—l _ tla—l) _ aM 77(“1 tza—l _
0T (ax) T(a +2)(0-T(a))

MOt G-t G-t
I'a)| a o o o

)

‘Tx(tz) o Tx(t1 )‘ <

a1 ya-1 M a  ta
(tz _t1 )+F(0(—+1)(t2 _t1)

_MT
0-T'(a)

aMn**
[(a +2)(0-T(a))

(G-t -

when t tends to t,, with |t1 —t, | <, we have |TX(t2) —-T x(t) | < &, which proves that the family

TX is equicontinuous. Thus by Ascoli-Arzela theorem, TX hasa compact closure. In view of stepl, step2
and step3, the Schauder-Tychonoff fixed point theorem guarantees that T has at least one fixed point X € X,

that is TX(t) = X(t).
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