
RESEARCH INVENTY: International Journal of Engineering and Science
ISSN: 2278-4721, Vol. 1, Issue 7 (November 2012), PP 36-41
www.researchinventy.com

36

Design of LDPC Decoder Using FPGA: Review of Flexibility

1
Asisa Kumar Panigrahi,

2
Ajit Kumar Panda

1, 2
 (Department of Electronics & Communication Engg

National Institute of Science & Technology

Brahmapur, India)

Abstract - Low Density Parity Check (LDPC) codes have become very popular now-a-days because of their

shannon limit approaching error correcting capability and hence have been used in many applications. This

paper demonstrates a flexible Low Density Parity Check (LDPC) decoder which is an improve ment over other

existing work on a general LDPC decoder. In this paper we have presented a fully flexible LDPC decoder design

in FPGA which supports different codes and data rates. This decoder finds application in many communication

standards such as Wireless LAN (IEEE 802.lln), WIMAX (IEEE 801.16e) and DVB-S2, on a single hardware

platform which makes the transition from theory to practice a much easier one. Finally, this paper proposes a

method of designing of fully flexible LDPC Decoder in Spartan6- xc6slx16-3 FPGA hardware.

Keywords - Error-correcting code, FPGA hardware, LDPC, ROM Configuration Shannon capacity

I. INTRODUCTION
Error correction coding is a means which deals with detection and correction of errors which are

introduced into a communication system by the receiver. Shannon published a paper in 1948 that revolutionized

communicat ions. He found that there is a fundamental limit to how much in formation can be reliably sent over a

channel (its capacity) with respect to the noise present in the system [1]. Although he defined a limit, it only

showed how good the best possible code would perform, hence the proof was non-constructive. Low Density

Parity Check (LDPC) Codes are a class of block code that satisfies both randomness and increased length. These

codes are found to have the best performance till date, by achieving a capacity within 0.00 45 dB of the Shannon

limit [2].A (n, k) block code takes k bits (message bits) at a time and produces n bits (code bits). Normally,

Block codes introduce redundancy for error correct ion. Let u be the collection of k message bits which is

denoted as message word, and c be the collection of n encoded bits which is denoted as a codeword.

An important parameter of a block code is its code rate (r). It is a measure of the amount of informat ion

(message) bits sent per codeword. The more the informat ion sent, the lesser the redundancy and fewer the error

correction by the code. Conversely if the amount of redundancy introduced is high the transmitter will spend

less time sending informat ion.

The code words are encoded through a generator matrix G as given by the following identity:

c = u * G

Where G is a (n, k) binary matrix.

For every generator matrix G, there exists many parity check matrices (H) that satisfy the equation:

G * H
T
 = 0

The parity check matrix has the following important property i.e. c is a codeword if and only if it satisfies:

C * H
T
 = 0

i.e. all the code words lie in the null space of H.

Low Density Parity Check (LDPC) Codes are a form of forward erro r correction codes and was first

discovered by Gallager in 1962 [3]. These are nothing but block codes whose parity -check matrix (H) contains

very few non zero entities.

H=

 (a)

Design Of LDPC Decoder Using FPGA: Review of Flexibility

37

 (b)

 Fig 1. LDPC code example. (a) Parity check matrix (b) Tanner graph

The Tanner graph shown above is a graphical form of representing the parity check matrix. A Tanner

graph consists of two sets of vertices i.e. n vertices for the codeword bits (bit nodes), and m vertices for the

parity-check equations (check nodes). A bit node gets joined to a check node by an edge, if that bit is included in

the corresponding parity-check equation. The number of edges in the tanner graph is equal to the number of

ones in the parity check matrix. Fig 1(b) shows a Tanner graph representation of the parity check matrix H as

shown in Fig 1(a).

1.1 DECO DING-MESSAGE PASSING:

The most typical decoding procedure implemented in several designs is the message passing algorithm, also

known as “sum-product” or “belief propagation” (BP) Algorithm [4]. This algorithm implements the iterative

exchange of node-generated messages along the edges of the graph. Most of the implementation challenges

come from the communication structure to support message exchange among Variab le Nodes (VNs) and Check

Nodes (CNs) even if the nodes require additional computational capabilities. In addition, modern applications

often need adaptation capabilities in a number of system parameters as block size and code rate impose tight

flexib ility requirements on hardware implementation of some designs.

II. LITERATURE REVIEW ON FLEXIBLE LDPC DECODER
Several researches have been conducted on the LDPC decoder till date, but there is very less reported

work on flexible LDPC decoders. Some of the literature surveys done are summarized as follows:

2.1 SERIAL DECODER

 It consists of a single check node, a single variable node and memory. The variable nodes can be

updated once at a time and then the check nodes are updated in the serial manner. Serial i mplementation has a

added advantage that it is very flexib le thereby supporting different block sizes and code rates with only a new

parity matrix being loaded into the memory. Unfortunately, this approach is too slow for any operation except

simulations [5]. The number of clock cycles required for each iteration of the serial decoder is approximately

twice the number of edges present.

2.2 ANALO G IMPLEMENTATIO N

While majority of the papers presented the use of digital signals to implement the decoder architect ure,

a number of papers have also used analog methods for implementation of their proposed designs. While it is not

feasible to implement an analog decoder on an FPGA (FPGA devices can only process digital signals), it is

nonetheless interesting to see analog methods being applied to solve a purely dig ital problem especially when

their performance is comparable to their digital counterparts. There were two approaches of implementing the

sum product algorithm. One of the two approaches was to use the non -linearities of charging a Field Effect

Transistor (FET) [6, 7], while the other approach was to use a combination of resistors and capacitors, thereby

resulting in RC differential equations [8]. The main d isadvantage of these two approaches is that they provide

more delay during decoding and are not feasible to implement on FPGA.

Design Of LDPC Decoder Using FPGA: Review of Flexibility

38

2.3 PARALLEL DECODER

A fully-parallel decoder completes the update check message step in one clock cycle and then in the

next cycle completes the update bit message step. This allows a marked increase in decoding speed as compared

to the serial decoder. The main disadvantage of using the decoder is that none of the reviewed parallel decoder

implementations [9, 10, 11, and 12] have any flexib ility in view of code design. The routing between check and

bit nodes need redesigning for another code realizat ion, while a d ifferent code rate or degree d istribution may

not be possible without a complete redesign.

2.4 PARTIALLY PARALLEL DECODER

In a partially parallel decoder design, some check and bit nodes are realized in hardware which

involves sharing as in the serial decoder case. There is a trade-off between speed and complexity which results

in increase in the number of check and bit nodes when realized in hardware which in turn increases the speed of

each decoder iteration. This in turn increases the complexity of the design. Serial and parallel architectures

could be considered subclasses of the partially parallel decoder (serial implementation has only one bit and

check node realized in hardware while parallel implementation would have all b it and check nodes realized in

hardware). The major d isadvantage in this case is memory collision. If two nodes try to access the same memory

during the same clock cycle a collision occurs and one of the nodes has to stall for a cycle which in turn

decreases the throughput of the decoder.

III. VARIOUS PROPOSED METHODS FOR FLEXIBLE LDPC DECODER IMPLEMENTATION
A number of authors have recommended the use of partially parallel method for designing a fully

flexib le LDPC Decoder.Masera et al., (2007) proposed flexible LDPC decoder with the help of Low-Traffic BP

(LTBP) algorithm [5]. The LTBP algorithm is of real help in the implementation of LDPC decoders only if a

communicat ion network supports parallel Multicast. A simple structure to implement such a network consists of

a crossbar switch known as „Bens Network‟ and a multip lexer bank. The memory collision problem which

occurs due to the usage of partially parallel decoder is somehow reduced by this architecture. Unfortunately, the

design is highly complex and not so mature as far as speed is concerned. In another research, Lee et al., (2008)

have also used the Benes network in their partially parallel LDPC decoder design [13]. In the proposed

architecture, Benes network is used to implement the interconnection network that can be configured according

to a parity-check matrix. Compared to the previous flexib le architecture, the proposed decoder shows a better

Throughput-to-Area Ratio (TAR). Unfortunately the design being highly complex and deeply pipelined is

suitable for no application other than Application Specific Integrated Circu it (ASIC) implementation. Chuan

Zhang et al. (2010) proposed a flexible LDPC decoder design for mbps applications [14]. The Benes network is

employed to implement the configurable interconnections between the Variab le Node Processing Unit (VNPU)

and Check Node Processing Unit (CNPU) arrays which in turn brings sufficient flexib ility for mult iple code

rates and code lengths. Compared to the previous flexible arch itecture, the proposed decoder shows better TAR.

By adopting better optimized p ipelining scheme higher throughput can be achieved in this architecture.

IV. FULLY FLEXIBLE DECODER ARCHITECTURE
The design is based on scheduling as described in [15] by Masera et al. The proposed design

implementation is based on both partially parallel implementation and unicast messages while the design

proposed by Masera et al is based on multicast messages. In this design, the interleaver is more co mplex while

the bit and check node processors as well as the scheduling are simpler.

The main design goal is universality i.e. the decoder should be capable of implementing any given code (up to

maximum design constraints) without changing the design of the decoder. The architecture consists of a number

of Processors (P), a Message Permutation Block (MPB) and a Control Logic Block (CLB), as shown in Fig 2.

Fig 2. Top block d iagram for decoder

Design Of LDPC Decoder Using FPGA: Review of Flexibility

39

The decoding process follows four distinct steps as shown in Fig. 3.

4.1. INITIALIZATIO N

During init ialization, channel measurements are loaded into the bit processor blocks.

4.2. BIT TO CHECK

During the bit to check half iterat ion, the bit node processor performs the bit node function as described

in the equation below [16].

In the first half iteration there are no incoming messages and the processor outputs the channel measurement.

The messages flow from the bit node processors through the message permuting block and then to the

corresponding check node processor in order.

4.3. CHECK TO BIT

During the bit to check half iteration, the check node processor performs the check node function as

described in the equation below [16].

The messages flow from the check node processors through the message permuting block and then to the

corresponding bit node processor in order.

4.4. OUTPUT

After a number of iterations of bit to check and check to bit cycles the decoder moves to the output

stage.

Fig 3. State machine fo r decoder

The MPB decides the flexibility of the decoder. Its purpose is to connect the bit node processor to the

check node processor (and vice versa), so that the check node processor receives the incoming messages in a

order as depicted in the Tanner graph. The control unit is responsible for implementing the state machine. The

configuration for the code is stored in a ROM block within the control unit which contains information about the

time vary ing settings for the Benes network and the interleaver banks in the mes sage permutation unit. It also

assigns the appropriate bit and check nodes to the respective processors.

V. DESIGN APPROACH

System generator is very flexib le in integrating different design approaches namely Simulink models

and VHDL codes. Simulink provide a much higher level of abstraction than VHDL. Therefore, our design

approach utilizes Simulink library blocks to design various modules of the proposed decoder architecture and

the VHDL code for the same is generated automatically using system generator. The auto-generated VHDL

code can also be used in Xilinx ISE (Integrated Software Environment) for synthesis and implementation on

desired FPGA (Field Programmable Gate Array). Automatic VHDL code generation reduces design efforts

hence increases design productivity.

VI. DECODER DESIGN
Our decoder design architecture mainly consists of two Processors i.e. Check Node Unit Processor and

Variable Node Unit Processor. A generic Simulink model was first developed for the variable node and check

node.

6.1. VARIABLE NODE DESIGN USING SIMULINK

The variable node, shown in Fig 4, has been designed in Simulink using the basic addsub and mux

Xilinx blocks from the Simulink library. As shown in Fig 4, the total sum is computed from three messages

coming in from different check nodes as well as the channel input data. Three different outgoing messages are

formed where each outgoing message has each corresponding message from the check node subtracted from it.

Design Of LDPC Decoder Using FPGA: Review of Flexibility

40

These outgoing messages are sent to the appropriate node connection as designated by the parity check matrix.

At the start of the first iteration, the variable nodes will simply bypass the sum operation and send the input

noisy channel data directly to the check nodes as there are no return messages from the check node in the

beginning.

Fig 4. Variable node design in Simulink

6.2. CHECK NO DE DESIGN USING SIMULINK

The Simulink model of the check node is as shown in Fig 5

.

 Fig 5. Check node design in Simulink

It uses blocks from Simulink library (absolute and bitwis e XOR Xilinx blocks). The check node finds

the minimum of all the inputs and performs the parity checks. Finally, the fully flexib le LDPC decoder design

using Variable node and Check node is shown in Fig 6 below.

Fig 6. LDPC Decoder design in Simulink

Once the Simulink models are developed for the LDPC Decoder, the VHDL code can be generated

automatically using the system generator.

Design Of LDPC Decoder Using FPGA: Review of Flexibility

41

VII. FPGA IMPLEMENTATION AND SIMULATION RESULTS
 We implement this LDPC decoder in Xilinx Hardware Description Language and synthesize it using ISE (Ver.

13.4). The code is downloaded onto the xc6slx16 device of Spartan 6 family using csg324 package. The b oard

was NEXYS 3 from DIGILENT spartan6. The table below summarizes the design statistic results of FPGA for

the desired LDPC decoder.

VIII. CONCLUSION
This paper has undergone an extensive review of the existing research works on flexible LDPC d ecoder

and flexible LDPC decoders. We have designed a fully flexib le LDPC decoder by using partially parallel

implementation and the decoder is found to run at a clock speed of 11.2ns (Maximum frequency of operation

being 89.29MHz). Based on these results, we conclude that the proposed architecture provides better solution

for high speed decoding and also takes lesser area. Hence TAR increases which is better than the previous

architectures.

IX. ACKNOWLEDGMENT
The authors acknowledge TIFAC-CORE for 3G/4G Communication Technologies at National Institute

of Science & Technology, Brahmapur, Odisha.

REFERENCES
 Journal Papers:

[1] C. Shannon, “A mathematical theory of communication," Bell System Technical Journal, vol. 27, no. 1, pp. 379 -423, 1948.

[2] S.-Y. Chung, J. Forney, G.D., T . Richardson, and R. Urbanke, “On the design of low density parity check codes within 0.0045 db of
the shannon limit," Communications Letters, IEEE, vol. 5, no. 2, pp. 58-60, Feb 2001.

[3] R. Gallager, “Low-density parity-check codes," Information Theory, IEEE Transactions on, vol. 8, no. 1, pp. 21-28, Jan 1962.

[4] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–
431, Mar. 1999.

[5] G. Masera, F. Quaglio, and F. Vacca, “Implement ation of a flexible LDPC decoder,"Circuits and Systems II: Express Briefs, IEEE
Transactions on, vol. 54, no. 6, pp. 542-546, June 2007.

[6] V. G. Chris Winstead, Nhan Nguyen and C. Schlegel, “Low-voltage cmos circuits for analog iterative decoders," Circuits and
Systems, IEEE Transactions on, vol. 53, Apr. 2006.

[7] C. Kong and S. Chakrabartty, “Analog iterative ldpc decoder based on margin propagation," Circuits and Systems, IEEE
Transactions on, vol..54, pp.1140-1144, Dec.2007.

[8] S. Hemati and A. Banihashemi, “Dynamics and performance analysis of analog iterative decoding for low-density parity-check
(ldpc) codes," Communications, IEEE Transactions on, vol. 54, pp. 61-70, Jan. 2006.

[9] A. Blanksby and C. Howland, “A 690-mw 1-gb/s 1024-b, rate-1/2 low-density parity-check code decoder," Solid-State Circuits,
IEEE Journal of, vol.37, no.3, pp.404-412, Mar2002.

[10] G. C. Luca Fanucci, Pasquale Ciao, “Design of a fully-parallel high-throughput decoder for turbo gallager codes," IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, no.7, pp.976-1986.

[11] L. Zhou, C. Wakayama, and C.-J. Shi, “Cascade: A standard supercell design methodology with congestion-driven placement for

three-dimensional interconnect-heavy very large-scale integrated circuits," Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 26, no. 7, pp. 1270-1282, July 2007.

[12] V. Nagarajan, S. Laendner, N. Jayakumar, O. Milenkovic, and S. P. Khatri, “High- throughput vlsi implementations of iterative
decoders and related code construction problems," J. VLSI Signal Process. Syst., vol. 49, no. 1, pp. 185-206, 2007.

[13] J.-Y. Lee and H.-J. Ryu, “A 1-Gb/s flexible ldpc decoder supporting multiple code rates and block lengths," Consumer Electronics,
IEEE Transactions on, vol. 54, pp. 417-424, May 2008.

[14] Chuan Zhang, Zhongfeng Wang, Jin Sha, Li Li, and Jun Lin ,” Flexible ldpc decoder design for multigigabit -per-second
applications,” Circuits and Systems, IEEE Transactions on, vol. 57, pp. 116-124, Jan. 2010.

[15] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws to parallel turbo and LDPC decoder architectures,"
Information Theory, IEEE Transactions on, vol. 50, no. 9, pp. 2002-2009, Sept. 2004.

[16] S. Johnson, “Introduction to ldpc codes," in ACoRN Spring School on Coding, Multiple User Communications and Random Matrix
Theory, 2006.

Logic Components(Resources)

Used

Slices

765

Flip flops

646

Block RAMs

19

Maximum Frequency of Operation

89.29MHz

