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Abstract - Low Density Parity Check (LDPC) codes have become very popular now-a-days because of their 

shannon limit approaching error correcting capability and hence have been used in many applications. This 

paper demonstrates a flexible Low Density Parity Check (LDPC) decoder which is an improve ment over other 

existing work on a general LDPC decoder. In  this paper we have presented a fully flexible LDPC decoder design 

in FPGA which supports different codes and data rates. This decoder finds application in many communication 

standards such as Wireless LAN (IEEE 802.lln), WIMAX (IEEE 801.16e) and DVB-S2, on a single hardware 

platform which makes the transition from theory to practice a much easier one. Finally, this paper proposes a 

method of designing of fully flexible LDPC Decoder in Spartan6- xc6slx16-3 FPGA hardware. 
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I. INTRODUCTION 
Error correction coding is a means which deals with detection and correction of errors which are 

introduced into a communication system by the receiver. Shannon published a paper in 1948 that revolutionized 

communicat ions. He found that there is a fundamental limit to how much in formation can be reliably sent over a 

channel (its capacity) with respect to the noise present in the system [1]. Although he defined a limit, it only 

showed how good the best possible code would perform, hence the proof was non-constructive. Low Density 

Parity Check (LDPC) Codes are a class of block code that satisfies both randomness and increased length. These 

codes are found to have the best performance till date, by achieving a capacity within 0.00 45 dB of the Shannon 

limit [2].A (n, k) block code takes k bits (message bits) at a time and produces n bits (code bits). Normally, 

Block codes   introduce redundancy for error correct ion. Let u be the collection of k message bits which is 

denoted as message word, and c be the collection of n encoded bits which is denoted as a codeword. 
 

      

 
 

An important parameter of a block code is its code rate (r). It is a measure of the amount of informat ion 

(message) bits sent per codeword. The more the informat ion sent, the lesser the redundancy and fewer the error 

correction by the code. Conversely if the amount of redundancy introduced is high the transmitter will spend 

less time sending informat ion. 

The code words are encoded through a generator matrix G as given by the following identity: 

c = u * G 

Where G is a (n, k) binary matrix. 

For every generator matrix G, there exists many parity check matrices (H) that satisfy the equation: 

G * H
T
 = 0 

The parity check matrix has the following important property i.e. c  is a codeword if and only if it satisfies:  

C * H
T
 = 0 

i.e. all the code words lie in the null space of H.  
 

Low Density Parity Check (LDPC) Codes are a form of forward erro r correction codes and was first 

discovered by Gallager in 1962 [3]. These are nothing but block codes whose parity -check matrix (H) contains 

very few non zero entities.  

H=  

 

 

      (a) 
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      (b) 

   Fig 1. LDPC code example. (a) Parity check matrix (b) Tanner graph  

 

The Tanner graph shown above is a graphical form of representing the parity check matrix. A Tanner 

graph consists of two sets of vertices i.e. n vertices for the codeword bits (bit nodes), and m vertices for the 

parity-check equations (check nodes). A bit node gets joined to a check node by an edge, if that bit is included in 

the corresponding parity-check equation. The number of edges in the tanner graph is equal to the number of 

ones in the parity check matrix. Fig 1(b) shows a Tanner graph representation of the parity check matrix H as 

shown in Fig 1(a). 

 

1.1 DECO DING-MESSAGE PASSING:  

The most typical decoding procedure implemented in several designs is the message passing algorithm, also 

known as “sum-product” or “belief propagation” (BP) Algorithm [4]. This algorithm implements the iterative 

exchange of node-generated messages along the edges of the graph. Most of the implementation challenges 

come from the communication structure to support message exchange among  Variab le Nodes (VNs) and Check 

Nodes (CNs) even if the nodes require additional computational capabilities. In addition, modern applications 

often need adaptation capabilities in a number of system parameters as block size and code rate impose tight 

flexib ility requirements on hardware implementation of some designs.  

 

II. LITERATURE REVIEW ON FLEXIBLE LDPC DECODER 
Several researches have been conducted on the LDPC decoder till date, but there is very less reported 

work on flexible LDPC decoders. Some of the literature surveys done are summarized as follows: 
  

2.1 SERIAL DECODER 

 It consists of a single check node, a single variable node and memory. The variable nodes can be 

updated once at a time and then the check nodes are updated in the serial manner.  Serial i mplementation has a 

added advantage that it is very flexib le thereby supporting different block sizes and code rates with only a new 

parity matrix being loaded into the memory. Unfortunately, this approach is too slow for any operation except 

simulations [5]. The number of clock cycles required for each iteration of the serial decoder is approximately 

twice the number of edges present. 

 

2.2 ANALO G IMPLEMENTATIO N 

While majority of the papers presented the use of digital signals to implement the decoder architect ure, 

a number of papers have also used analog methods for implementation of their proposed designs. While it is not 

feasible to implement an analog decoder on an FPGA (FPGA devices can only process digital signals), it is 

nonetheless interesting to see analog methods being applied to solve a purely dig ital problem especially when 

their performance is comparable to their digital counterparts. There were two approaches of implementing the 

sum product algorithm. One of the two approaches was to use the non -linearities of charging a Field Effect 

Transistor (FET) [6, 7], while the other approach was to use a combination of resistors and capacitors, thereby 

resulting in RC differential equations [8]. The main d isadvantage of these two approaches is that they provide 

more delay during decoding and are not feasible to implement on FPGA.  
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2.3 PARALLEL DECODER 

A fully-parallel decoder completes the update check message step in one clock cycle and then in the 

next cycle completes the update bit message step. This allows  a marked increase in decoding speed as compared 

to the serial decoder. The main disadvantage of using the decoder is that none of the reviewed parallel decoder 

implementations [9, 10, 11, and 12] have any flexib ility in view of code design. The routing between check and 

bit nodes need redesigning for another code realizat ion, while a d ifferent code rate or degree d istribution may 

not be possible without a complete redesign. 
 

2.4 PARTIALLY PARALLEL DECODER  

In a partially parallel decoder design, some check and bit nodes are realized in hardware which 

involves sharing as in the serial decoder case. There is a trade-off between speed and complexity which results 

in increase in the number of check and bit nodes when realized in hardware which in turn increases the speed of 

each decoder iteration. This in turn increases the complexity of the design. Serial and parallel architectures 

could be considered subclasses of the partially parallel decoder (serial implementation has only one bit and 

check node realized in hardware while parallel implementation would have all b it and check nodes realized in 

hardware). The major d isadvantage in this case is memory collision. If two nodes try to access the same memory 

during the same clock cycle a collision occurs and one of the nodes has to stall for a cycle which in turn 

decreases the throughput of the decoder. 
 

III. VARIOUS PROPOSED METHODS FOR FLEXIBLE LDPC DECODER IMPLEMENTATION 
A number of authors have recommended the use of partially parallel method for designing a fully 

flexib le LDPC Decoder.Masera et al., (2007) proposed flexible LDPC decoder with the help of Low-Traffic BP 

(LTBP) algorithm [5]. The LTBP algorithm is of real help in the implementation of LDPC decoders only if a  

communicat ion network supports parallel Multicast. A simple structure to implement such a network consists of 

a crossbar switch known as „Bens Network‟ and a multip lexer bank. The memory collision problem which 

occurs due to the usage of partially parallel decoder is somehow reduced by this architecture. Unfortunately, the 

design is highly complex and not so mature as far as speed is concerned. In another research, Lee et al., (2008) 

have also used the Benes network in their partially parallel LDPC decoder design [13]. In the proposed 

architecture, Benes network is used to implement the interconnection network that can be configured according 

to a parity-check matrix. Compared to the previous flexib le architecture, the proposed decoder shows a better 

Throughput-to-Area Ratio (TAR). Unfortunately the design being highly complex and deeply pipelined is 

suitable for no application other than Application Specific Integrated Circu it (ASIC) implementation. Chuan 

Zhang et al. (2010) proposed a flexible LDPC decoder design for mbps applications [14]. The Benes network is 

employed to implement the configurable interconnections between the Variab le Node Processing Unit (VNPU) 

and Check Node Processing Unit (CNPU) arrays which in turn brings sufficient flexib ility for mult iple code 

rates and code lengths. Compared to the previous flexible arch itecture, the proposed decoder shows better TAR. 

By adopting better optimized p ipelining scheme higher throughput can be achieved in this architecture. 
 

IV.  FULLY FLEXIBLE DECODER ARCHITECTURE 
The design is based on scheduling as described in [15] by Masera et al. The proposed design 

implementation is based on both partially parallel implementation and unicast messages while the design 

proposed by Masera et al is based on multicast messages. In this design, the interleaver is more co mplex while 

the bit and check node processors as well as the scheduling are simpler.  

The main design goal is universality i.e. the decoder should be capable of implementing any given code (up to 

maximum design constraints) without changing the design of the decoder. The architecture consists of a number 

of Processors (P), a Message Permutation Block (MPB) and a Control Logic Block (CLB), as shown in Fig 2.  

 

 
Fig 2. Top block d iagram for decoder 
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The decoding process follows four distinct steps as shown in Fig. 3. 

 

4.1. INITIALIZATIO N 

During init ialization, channel measurements are loaded into the bit processor blocks. 

 

4.2. BIT TO  CHECK 

During the bit to check half iterat ion, the bit node processor performs the bit node function as described 

in the equation below [16].  

       
In the first half iteration there are no incoming messages and the processor outputs the channel measurement. 

The messages flow from the bit node processors through the message permuting block and then to the 

corresponding check node processor in order.  

 

4.3. CHECK TO BIT 

During the bit to check half iteration, the check node processor performs the check node function as 

described in the equation below [16]. 

 
The messages flow from the check node processors through the message permuting block and then to the 

corresponding bit node processor in order.  

 

4.4. OUTPUT  

After a number of iterations of bit to check and check to bit cycles the decoder moves to the output 

stage. 

 
 

Fig 3. State machine fo r decoder 

 

The MPB decides the flexibility of the decoder. Its purpose is to connect the bit node processor to the 

check node processor (and vice versa), so that the check node processor receives the incoming messages in a 

order as depicted in the Tanner graph. The control unit is responsible for implementing the state machine. The 

configuration for the code is stored in a ROM block within the control unit which contains information about the 

time vary ing settings for the Benes network and the interleaver banks in the mes sage permutation unit. It also 

assigns the appropriate bit and check nodes to the respective processors.  

 

V. DESIGN APPROACH 

System generator is very flexib le in integrating different design approaches namely Simulink models 

and VHDL codes. Simulink provide a much higher level of abstraction than VHDL. Therefore, our design 

approach utilizes Simulink library blocks to design various modules of the proposed decoder architecture and 

the VHDL code for the same is generated automatically using system generator.  The auto-generated VHDL 

code can also be used in Xilinx ISE (Integrated Software Environment) for synthesis and implementation on 

desired FPGA (Field Programmable Gate Array). Automatic VHDL code generation reduces design efforts 

hence increases design productivity. 

 

VI.  DECODER DESIGN 
Our decoder design architecture mainly consists of two Processors i.e. Check Node Unit Processor and 

Variable Node Unit  Processor. A generic Simulink model was first developed for the variable node and check 

node. 
 

6.1. VARIABLE NODE DESIGN USING SIMULINK 

The variable node, shown in Fig 4, has been designed in Simulink using the basic addsub and mux 

Xilinx blocks from the Simulink library. As shown in Fig 4, the total sum is computed from three messages 

coming in from different check nodes as well as the channel input data. Three different outgoing messages are 

formed where each outgoing message has each corresponding message from the check node subtracted from it.  
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These outgoing messages are sent to the appropriate node connection as designated by the parity check matrix. 

At the start of the first iteration, the variable nodes will simply bypass the sum operation and send the input 

noisy channel data directly to the check nodes as there are no return messages from the check node in the 

beginning. 

 
Fig 4. Variable node design in Simulink 

 

6.2. CHECK NO DE DESIGN USING SIMULINK 

The Simulink model of the check node is as shown in Fig 5  

 

. 

 Fig 5. Check node design in Simulink 

It uses blocks from Simulink library (absolute and bitwis e XOR Xilinx blocks). The check node finds 

the minimum of all the inputs and performs the parity checks. Finally, the fully flexib le LDPC decoder design 

using Variable node and Check node is shown in Fig 6 below.  

 

  
Fig 6. LDPC Decoder design in Simulink 

 

Once the Simulink models are developed for the LDPC Decoder, the VHDL code can be generated 

automatically using the system generator.  
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VII.  FPGA IMPLEMENTATION AND SIMULATION RESULTS  
 We implement this LDPC decoder in Xilinx Hardware Description Language and synthesize it using ISE (Ver. 

13.4). The code is downloaded onto the xc6slx16 device of Spartan 6 family using csg324 package. The b oard 

was NEXYS 3 from DIGILENT spartan6. The table below summarizes the design statistic results of FPGA for 

the desired LDPC decoder.  

 

 

 

 

 

 

 

 

 

 

VIII. CONCLUSION 
This paper has undergone an extensive review of the existing research works on flexible LDPC d ecoder 

and flexible LDPC decoders. We have designed a fully flexib le LDPC decoder by using partially parallel 

implementation and the decoder is found to run at a clock speed of 11.2ns (Maximum frequency of operation 

being 89.29MHz). Based on these results, we conclude that the proposed architecture provides better solution 

for high speed decoding and also takes lesser area. Hence TAR increases which is better than the previous 

architectures. 
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Logic Components(Resources) 

 
Used 

 
Slices 

 
765 

 
Flip flops 

 
646 

 

Block RAMs 

 

19 

 
Maximum Frequency of Operation 

 
89.29MHz 

 


