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Abstract:  Falls are the main factor leading to hospitalization among the elderly, and making the prediction of 

fall risk and timely intervention treatment is the key to achieve healthy aging. In fall risk assessment, common 

methods at home and abroad include questionnaire, scale, and statistical methods. This paper combines multi-

dimensional gait parameters and machine learning algorithms to realize the quantitative assessment and 

accurate prediction of fall risk. Predict fall risk by building and optimizing machine learning models based on 

gait analysis. The research work covers the construction of fall risk prediction model, algorithm improvement 

and comparative analysis. Ninety-seven eligible participants from Foshan People's Hospital were included to 

collect data on gait parameters during single task (standard walking) and dual task (performing cognitive task) 

states. Through analyzing the collected data, the key gait factors affecting the fall risk in the elderly were deeply 

explored. We found that single-task step frequency, single-task foot following angle and single-task foot 

following angle symmetry parameters are closely related to fall risk. In order to further improve the prediction 

performance, this study proposed a new hybrid optimization strategy, PSO-GWO-LightGBM. The PSO 

algorithm effectively enhances the global exploration ability of the algorithm and suppresses the early 

convergence to the suboptimal solution, thus helping the LightGBM model to obtain a good parameter space, 

avoiding the premature local optimal in the model training process, and accelerating the convergence process 

of the model. In addition, GWO Wolf pack social hierarchy and collaboration mechanism are added to provide 

strong local search and fast convergence ability, and help the model to adjust the iterative process. The 

improved nonlinear convergence factor helps the overall algorithm to re-expand the parameter search space in 

the late iteration, which facilitates the model to jump out of the local optimum and improve the convergence 

accuracy. The experimental results showed that the PSO-GWO optimized LightGBM model achieved a 

significant improvement in the accuracy and generalization ability of fall risk prediction. 
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I. INTRODUCTION  

Globally, the aging phenomenon of the population is becoming increasingly significant. The study 

predicts that between 2000 and 2050, the number of people aged 60 and over will rise sharply from 605 million 

to 2 billion （Bo et al., 2021）. According to the results of the seventh national census, the number of people 

aged 60 and over in China accounted for 18.70 percent by the end of 20 20. In this part of the population, the 

proportion of elderly people aged 65 years and over in the total population was 13.5% (China Statistics., 2021). 

Analysts estimate that as the aging trend deepens, more exceed 30 percent (He et al., 2018) by 2050. In urban 

areas of China, the proportion of falls among the elderly is between 15.7% and 23.5% (Gao et al., 2023), the 

living environment of the rural elderly is more difficult, and the incidence of falls may be higher. It is important 

to study machine learning models based on gait analysis to predict fall risk. This fall risk prediction model can 

make full use of the patient's gait data, combine the advantages of machine learning algorithms, can more 

accurately predict fall risk, and provide scientific basis for personalized prevention and intervention measures, 

which can achieve real-time online assessment. 

Dual-task performance is widely considered an effective approach in assessing the effects of cognitive-

motor interaction. When the cognitive burden in the two tasks performed exceeds the individual cognitive 

capacity, the performance of both the primary and secondary tasks, or both, may be affected (Leone et al., 

2017). When performing dual-task walking, extra attention demands are called dual-task costs (Dual Task Cost, 

DTC), which quantify the need for cognitive resources by comparing the difference between a single task and 

dual-task performance. Numerous studies have shown a clear association between an increase in cognitive costs 
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and an increased risk of falls (McIsaac et al., 2015; Zukowski et al., 2021; OKeefe et al., 2021; Piche et al., 

2023). 

Some scholars  found that older people had a higher risk of falling outdoors than indoors, male elderly 

people had a higher risk of falling in the home environment, and the opposite was true outdoors(Ding et al., 

2018). Menant et al showed that older people wearing slippers were more likely to fall than those who were 

barefoot or wearing conventional shoes(Menant et al., 2008; Xiang et al., 2021). 

Palmerini et al. Through analyzing a large number of fall data in real environment, proposed a machine 

learning algorithm based on the multi-stage fall model, designed a new overlapping window technology based 

on the normalized signal peak time, all of the features are extracted from the acceleration paradigm, does not 

depend on the direction of the sensor, can provide accurate window for feature extraction, ensure the reliability 

and availability of data(Palmerini et al., 2020). Quadros et al. proposed a wristband fall detection method, 

combining different sensors, signals and direction components (vertical and not vertical), using a set of 

integrated method based on threshold and machine learning to determine the best method of fall detection, using 

threshold Madgwick decomposition method and machine learning method, verify the machine learning in 

practical application method than threshold method(Quadros et al., 2018). 

 

II. EXPERIMENTAL PROCEDURE  

2.1 Participator  

From the end of 2020 to the beginning of 2021,102 elderly people were first recruited from Foshan 

First People's Hospital. After screening, 97 participants met the criteria. 

Screening criteria for participants: (1) aged 55 years and older; (2) good cognitive function; (3) no 

recent major surgery and ability to walk independently or assisted equipment; (4) willing to participate in the 

study and signed informed consent. 

Exclusion criteria included: (1) neurodegenerative disorders that may affect cognitive or motor 

function; (2) taking antipsychotics or benzodiazepines, or having a severe mental condition problem, such as 

deep depression or severe anxiety. 

2.2 Clinical and fall assessment 

Prior to the start of the experiment, clinicians conducted preliminary fall risk assessments for all 

participants using the Falls Risk Assessment Scale for the Elderly issued in 2011 by the Ministry of Health of 

China. The distribution of people in each interval of fall risk scores is shown in Figure 2.1. 

 
Fig. 2.1 Number of falls risk scores 

 

 

2.3 Data acquisition  

Gait data acquisition was selected to complete three gait tests in a horizontal corridor with the help of a 

Jibuen wearable gait acquisition device. The includes shoes and wearable modules equipped with inertial 

MEMS (Microelectromechanical system) sensors attached to the bottom of the heel, the upper and lower limbs, 
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and the back of the wrist to capture motion signals and transmit them to the computer. Data pre-processing uses 

high-order low-pass filters and hexahedral calibration techniques to reduce high-frequency noise interference 

and mounting errors generated by the sensor device. Furthermore, the cumulative error was corrected based on 

the zero-correction algorithm. The final gait parameters were obtained by merging acceleration data and pose 

(calculated using a quaterion complementary filtering technique)(Gao et al., 2021; Tao et al., 2018; Xie et al., 

2019). 

Gait trials consisted of one single-task test and two two-task tests. Single-task walking (ST) is normal 

walking. The dual-task walk (DT) consists of two items: calculating a multiple of 7 and counting backward from 

100. For calculating a multiple of 7, participants counted while walking (e. g. 7,14,21, etc.) and counted down 

from 100 (e. g., 100,99,98, etc.). The collected gait parameters and their introduction are as follows: the stride 

length is the distance between the same leg from the foot following the ground and the foot following the 

ground again. Step speed is the distance moved in the forward direction per unit of time. Step frequency 

indicates the number of steps per minute. The support phase occupies most of the gait cycle, starting with the 

ground of the foot of one foot until the toe of the foot ends off the ground. The swing phase starts from the toe 

of a foot off the ground until the foot follows the ground again. Step time is the duration between the same leg 

following the foot and the next one. The swing time is the time period when the foot leaves the ground during 

the gait cycle. Support time is the period of the foot contact with the ground in the gait cycle. Toe Angle from 

the ground: the Angle between the toe and the ground when the foot is ready to leave the ground. The foot 

follows the ground Angle: the Angle of the heel to the ground when the foot is about to touch the ground. 

2.4 Fall risk factor analysis 

To deeply investigate the key features affecting the risk of falls, the recursive feature elimination (RFE) 

technique was used. RFE is an effective feature selection method by gradually removing less important features 

and standardizing only the features most relevant to the target variable. In this way, we screened the optimal 

feature combination for various machine learning models, ensuring that the features input to the model are not 

only concise but also highly representative. Figure 2.2 shows the importance ranking of each feature in the fall 

prediction model, where the abscissa indicates how much this feature contributes to the prediction results. The 

top 10 features are listed in the figure, and the top three features are single-task step frequency, single-task foot 

ground angle and single-task foot ground angle symmetry. These characteristics have significant effects in 

predicting the risk of falls. Single-task step frequency, single-task ground angle and single-task ground angle 

symmetry may be related to subject balance and walking stability. 

 
Fig. 2.2 Feature importance ranking of RFE 

 

We use our partial dependency maps (PDP) to illustrate the impact of single-task step frequency, single-task 

foot ground angle, and single-task foot ground angle symmetry on predicted fall risk values. As can be seen 

from Figure 2.3 that the single-task step frequency has a very limited effect on the model prediction results 

when the standardized value is less than 0, and the eigenvalue change has little effect on the fall prediction 

results. The effect of 0 and 0.25 on the model predicted fall risk value increased significantly and was positively 

correlated with the predicted score line, with almost no effect on the prediction. 
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Fig. 2.3 PDP of Cadence under Single-Task Condition 

As can be seen from Figure 2.4 , when the eigenvalue increases from 0 to 1, the influence of the single-task 

foot follows the ground angle on the model prediction increases significantly, showing a clear downward trend, 

which indicates that the single-task foot follows the ground angle and the fall wind. The effect of the single-task 

step frequency between 0 and 0.25 was significantly increased on the model predicted fall risk value and was 

positively correlated with the predicted score line, with almost no effect on the prediction in the other value 

fields. 

 
Fig. 2.4 PDP of Heel Strike Angle under Single-Task Condition 

 

As can be seen from figure 2.5, when the single task with ground angle symmetry in 0 to 0.3, with the 

effect of the single task with ground angle symmetry on the model prediction fall risk value increased 

significantly, and negatively correlated with the prediction score line, and away from the 0 interval, partial 

dependence variation is relatively flat, indicating that the influence of symmetry on the model prediction results 

is relatively small. 
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Fig. 2.5 PDP of Heel Strike Angle Symmetry under Single-Task Condition 

 
2.5 The LightGBM algorithm based on the PSO-GWO optimization 

Based on the shortcomings of the existing methods, this chapter introduces the PSO-GWO algorithm to 

optimize the LightGBM. PSO (Particle swarm optimization algorithm)  and GWO (Grey Wolf optimization 

algorithm), as two widely used swarm intelligent optimization algorithms, perform well in solving complex 

optimization problems. The PSO algorithm draws on the behavior of the flock foraging to search for the optimal 

solution by the movement of the particles in the solution space. The GWO algorithm simulates the social level 

and behavior of wolves' hunting, and optimizes the objective function through the cooperation of wolves. 

Considering the advantages of these two algorithms, we tried to combine them and propose a PSO, which was 

combined with the GWO algorithm to optimize the parameters of the LightGBM model, in order to further 

improve the performance of the model in the fall risk prediction task. 

The feasibility of combining the PSO algorithm and the GWO algorithm to optimize the LightGBM 

model parameters and predict the fall risk value is mainly reflected in the following aspects: 

(1) The PSO algorithm can better balance the global exploration and local development capability of 

the algorithm, and improve the convergence speed and optimization accuracy. This provides strong support for 

optimizing the parameters of the LightGBM model. 

(2) The GWO algorithm simulates the Wolf pack hierarchy and hunting behavior, and leads other 

wolves to optimize the search through �, � and γ wolves. The algorithm has strong global search ability and 

convergence speed to effectively avoid falling into local optima. Combining it with the PSO algorithm can 

further enhance the optimized performance of the algorithm. 

(3) The LightGBM model has the advantages of fast training speed and good generalization 

performance, and has shown good performance in the fall risk prediction task. Optimizing its parameters by 

PSO and GWO algorithms is expected to further improve the prediction accuracy of the model. 

Considering the characteristics of the PSO algorithm and the GWO algorithm, and the performance of 

the LightGBM model in the fall risk prediction task, combining the two algorithms to optimize the LightGBM 

model parameters has high feasibility. This is particularly important for optimizing the hyperparameters of 

LightGBM models, because efficient and accurate hyperparameter search can greatly improve the performance 

of the model on complex datasets, and by building the PSO-GWO-LightGBM model, it can improve the 

accuracy of fall risk value prediction. 

 

2.5.1 The PSO-GWO hybrid strategy 

The PSO algorithm uses the historically optimal information of individuals and groups to guide the 

search direction and has strong global search capability. However, it may sometimes converge prematurely to 

the local optimal solution, especially when dealing with complex problems. The GWO algorithm realizes a 

population-based optimization search by simulating the social hierarchy and hunting behavior of gray wolves. It 

is particularly good at local search, and can finely adjust the search direction to approximate the optimal 

solution. Combining PSO and GWO into PSO-GWO composite algorithm can make full use of PSO and local 

search capability of GWO to complement each other. In the search process, PSO can help GWO jump out of the 

possible local optimal trap, while GWO can conduct fine search near the better solution found by PSO, thus 

improving the quality of search efficiency and reconciliation. 
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(1) Improved nonlinear convergence factor 

The convergence factor of the grey Wolf algorithm is a key parameter, which balances the global 

exploration and local development capability of the algorithm. Its value usually decreases linearly from 2 to 0 

with the number of iterations. However, this linear decreasing strategy may not always be the most effective, 

because the behavior of the algorithm in the convergence process is not linear. The linear decrease may lead the 

algorithm to reduce the exploration range prematurely in the early stage of the search, or still maintain a large 

exploration range in the later stage of the search, thus affecting the convergence speed and accuracy of the 

algorithm. The modified non-linear convergence factors are as follows: 

  
 

   
  
 
 

        

                                                               (2.1) 

In the above equation, μ and ε are two parameters affecting the nonlinear change of the control 

parameter a. Figure 2.6 shows the convergence factors before the modification, and Figure 2.7 shows the 

modified convergence factors. 

 
Fig. 2.6 Original convergence factor 

 
Fig. 2.7 Modified convergence factor 
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(2)Adaptive update policy 

Since the particles will only move in the direction of their individual optima, it is easy to fall into the 

local optimal solution without escape. This can lead algorithms to difficulties in finding global optimal solutions, 

especially in functions with multiple local extreme points. When facing large-scale problems, PS may require a 

lot of computational time to find the optimal solution. Moreover, due to the lack of dynamic regulation of speed, 

the convergence accuracy of the algorithm may be low and difficult to converge. In this paper, we combine the 

search strategy of GWO algorithm to optimize the search process of PSO algorithm. 

  
(   )      

( )       (     
( ))                                                 

(2.2) 

                                                                             

(2.3) 

Where   is a random vector whose components are evenly distributed between [0,1].  is the adaptive weight, 

the specific formula is as follows: 

   
 ( )

 ( )  ( )  ( )
                                                            

(2.4) 

Where   is the parameter obtained after the tuning. 

2.5.2The PSO-GWO algorithm flow 

The following is the  PSO-GWO algorithm. The specific implementation steps of PSO-GWO algorithm 

are as follows: 

Step 1: Initialize the algorithm parameters and generate the initialized population in the problem space. 

Step 2: Use the immune selection mechanism to calculate the individual fitness value, and record the 

first three individuals according to the idea of the grey Wolf algorithm, recording the first three individuals as  

、  and   

Step 3: Iteratively update the nonlinear convergence factor    , and update the position of each searched 

individual according to the update strategy of the particle swarm algorithm. 

Step 4: Use the relative base learning mechanism to exchange information between individuals so as to 

constantly approach the optimal position. 

Step 5: Update the population with the adaptive variation operation. At the same time, it determines 

whether the algorithm has reached the maximum number of iterations. If it is, the global optimal individual is 

output, otherwise, the algorithm iteration is repeated from step 2. 

 

Fig.2.8 Flowchart of the PSO-GWO Algorithm 

 

2.5.3 Improved LightGBM model based on the PSO-GWO algorithm 

This section will further combine the PSO-GWO algorithm with the LightGBM model to construct an 

efficient fall risk prediction model. 

The main idea of the PSO-GWO-LightGBM model is to use the PSO-GWO algorithm to optimize the 

hyperparameters of the LightGBM model. Specifically, we encode the hyperparameters of the LightGBM model 

(learning rate, maximum tree depth, maximum number of leaf nodes, etc.) as the particle positions in the PSO-

GWO algorithm, and search for the optimal hyperparameter combination through iterative optimization. 
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LightGBM is a decision tree algorithm based on gradient lifting, whose performance largely depends on the 

choice of its hyperparameters. 

The following table is the five key parameters for optimizing the LightGBM by PSO-GWO. The values 

of these five parameters were encoded as the particle positions in the PSO, and the modified algorithm was used 

to search for the optimal values of these five parameters. In each iteration, the position of the current particle is 

used to configure the LightGBM, and its performance is evaluated on the validation set. The fitness value of the 

particle can be defined as the negative validation error of LightGBM. According to the particle fitness values, 

the velocity and position of the particles, and the positions of the  、  and γ wolves. 

In this way, we efficiently search the hyperparameter space and find a set of parameter values, enabling 

the optimal performance of LightGBM on the validation set. The PSO-GWO-LightGBM flowchart is shown in 

Figure 2.9 below. 

 

Tab. 2.1 Five key parameters of LightGBM optimized through PSO-GWO  

Hyperparameter name  Windows default   Optimum  

 learning rate  0.1 0.049 

Maximum depth of the tree -1 5 

The maximum number of leaf 

nodes 
31 213 

Feature sampling ratio 1.0 0.5 

Data sampling ratio 1.0 0.8 

 

 
  Fig. 2.9 PSO-GWO-LightGBM flow chart 

 

After adjusting the LightGBM model parameters using the PSO-GWO optimization algorithm, the fall 

risk value is predicted using the preset parameter configuration of the model. The specific prediction results and 

the comparison between the true and predicted values can be viewed in the detailed data in Table 2.2 and 

visually displayed in the form of scatter plot in Figure 2.10. 

 

Tab. 2.2 Prediction results of fall risk value using PSO -GWO-LightGBM model 

Model name MSE RMSE R-Square 

PSO-GWO- LightGBM 0.5391 0.7343 0.8011 
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Fig. 2.10 Scatter plot of PSO -GWO-LightGBM prediction results 

 
 

III. RESULTS AND DISCUSSIONS  

To verify the accuracy and effectiveness of the algorithm, the model with the classical optimization algorithm. 

 

Tab. 3.1 HY -LightGBM、RS -LightGBM、GA -LightGBM、LightGBM、PSO -GWO-LightGBM 

prediction comparison 

Model name MSE RMSE R-Square 

HY -LightGBM 0.6712 0.8193 0.6842 

RS -LightGBM 0.6879 0.8294 0.5413 

GA -LightGBM 0.6923 0.8321 0.4652 

LightGBM 0.7177 0.8472 0.6019 

PSO-GWO- LightGBM 0.5391 0.7343 0.8011 
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Fig. 3.2 PSO -GWO-LightGBM, LightGBM, GA -LightGBM, RS -LightGBM, HY -LightGBM prediction 

comparison chart 

 

The experimental results show that among the four models, the LightGBM model (PSO-GWO-

LightGBM) optimized by PSO-GWO algorithm has the best evaluation indexes in the mean square error (MSE), 

the root mean square error (RMSE), and the coefficient of determination (R-Square). Its MSE value is 0.5391, 

RMSE value is 0.7343, and R-Square value is 0.8011, which indicates that the PSO-GWO-LightGBM model 

has a significant improvement in the accuracy of fall risk prediction when compared with other models. Its 

efficient global search ability, mechanism to prevent premature convergence and strategy to optimize 

hyperparameters work together to show stronger performance in the fall risk prediction task. This also 

demonstrates the effectiveness and superiority of the PSO-GWO algorithm in dealing with complex parameter 

optimization problems. 

 

IV. CONCLUSION  

 In this study, we proposed a PSO-GWO-LightGBM, a LightGBM model optimization strategy based 

on immune particle swarm optimization and grey Wolf optimization algorithm. The PSO algorithm effectively 

enhances its global search capability. At the same time, by combining with the GWO algorithm, the exploration 

and development ability of the algorithm are further balanced. The PSO algorithm selects the parameter space of 

the LightGBM model through the immune selection mechanism, dynamically adjusts the diversity of parameter 

combinations, and avoids the model training. The relative basis learning mechanism helps to communicate and 

share search information between different parameter combinations, which accelerates the convergence process 

of the model. The improved nonlinear convergence factor helps the overall algorithm to re-expand the parameter 

search space later in the iteration period, which facilitates the model to jump out of the local optimum and 

improve the convergence accuracy. The social hierarchy strategy of the GWO algorithm leads the whole 

parameter population to search for the optimal solution, which further improves the performance of the 

LightGBM model. Through a series of comparative experiments, PSO-GWO-LightGBM has achieved 

significant improvement in the prediction accuracy, stability and generalization ability, which provides new 

ideas and methods for the intelligent assessment of fall risk. 
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