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Abstract
We present some refinements for finding the averages in examination marks. In many high-level
examinations, students take different courses from different disciplines. The results are prepared
from the marks of different courses of their study without considering the marks have received
through a fair process. In this paper, different methods are considered for finding the averages of
the subjects taken by the candidates. We only consider the averages of the marks and give them
the grades.
Assume that N candidates take q papers from a total number of n papers. Let m;; be the mark
scored by candidate { on paper j and each paper is assumed to have equal weighting in the overall
assessment. To harmonize standards across all papers, an adjustment parameter p; (multiplicative)
for papers j is introduced along with an ‘average’ assessment a; for candidate i. The parameters
a; and p; are calculated by minimizing a loss function which represents the disagreement between
the actual marks and proposed average assessments.
In MATLAB, some defined routines are available for minimization of constrained optimization
problem (fininsearch. fmincon etc) to compute the parameters, but here we used own MATLAB
programs using Fletcher-Reeves (FR) method for the raw data set of examination marks table-1.

l{cywurds; Fletcher-Reeves, parameter compulations; Broyden's and Biggin's scaling ol examination marks.
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. Introduction

In this paper we are interested in measuring the overall average of a student or, in a general to check
the ability of a student, so that a weak performance in one paper may be compensated by a strong performance
in another paper.

Examinations usually consist of several components. We are interested to find a fair and harmonious
way of deriving overall marks from a set of components. Here, we assume that the component marks have been
received through a fair process and the only problem that we will apply, is that of combining them fairly and
consistently.

One method that is often used is that of simply adding the component marks together to get the overall
mark. This assumes that the components are all equally important and are also treated equally. For combining
these courses, the candidates may have some core courses, optional courses, or some specialties in pure,
Applied, Computational Mathematics, Statistics or studying several special types.

The result is a set of assessments in which not every candidate takes every paper. Yet for the purpose
of ranking the candidates and classifying their degrees, a single overall ‘average’ mark must be assigned to each
candidate. It is assumed that each of N candidates take q papers which are selected from a total numbers of n
papers. The mark scored by candidate i on paper j is m; and each paper is assumed to have equal weighting in
the overall assessment. Of course, my; only exists for certain pairs. The papers will vary in their intrinsic
difficulty and the examiners in their generosity. The overall ability can be regarded as some function of the
component marks in the individual topics.
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To harmonize standards across all papers, an adjustment parameter p; (multiplicative) for paper j is
introduced, along with an ‘average’ measure a; for candidate i . These parameters are calculated by minimizing
a loss function which represents the disagreement between the scaled marks and the ability of the candidates.
This idea was used by [6] in a somewhat different context. Murgatroyd ([6, 8]) also followed this philosophy
although he mainly considered additive adjustments.

I1.  Computation of the parameters

2.1 Broyden’s Method
A simple form the loss function which treats all candidates and all papers on the same basis is the

one proposed by [1, 4],
2
s ZZij(iji;—ﬂi) (2.1.1)
We choose P and a, to minimize this loss function S. Unfortunately, the solution to this problem
is p; =0, and a; = 0 for all i and j. Thus following [1, 4], we considered a constraint that the

total of the marks remains the same after multiplying the adjustment factor p;. Thus, we have

XiXimy =X Xip;myj (2.1.2)
Using (1) and (2) we can construct the Lagrangian
2
L=%¥pjmy;—a;) —24%:%;m;(p; — 1.0) (2.1.3)
This leads to the equations a; = E‘,-% (2.1.4)
and p; = Yiagmij+ A Timy; (2.15)

Zimj;
Where n; is the number of papers taken by candidate i.
It 1s very important to state that there may be 100-200 candidates each taking 8 (say) options from
given 30-60 papers.
The adjustment factor p; (j = 1,...,n) for each paper and a; (i=1,..,N) for each candidate it
would not be unusual to have a constrained optimization problem higher number of variables. For
this reason, we normally preferred Fletcher-Reeves optimization method [53], to obtain the
solution to the problem which uses function values and gradient only at each iteration, posed by
[8.9].

Whereas the variable metric methods such as Davidon-Fletcher-Powell (DFP) or Broyden-
Fletcher-Goldfarb-Shanno (BFGS), need the Hessian matrix, which gets updated at each iteration.
Fletcher-Reeves methos [5], is an iterative method which searches along a set of mutually
conjugate directions. To construct the next search direction, we need the current gradient
Gie+1 and the last scarch dircction d, (which 1s stored),

dis1 = —Gre1 + @rdy

s I
Where oy, = ———
kT g

and dj, is the current search direction.
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Since the constraint can be readily used to eliminate one of the vanables (p,, say). We have
2 . T oy Ty
5= EIEJ'(p:'ij - ar‘) with Pn = E_E?=]1PJT_; (2.1.6)
where T; = }; m;; =Total marks for paper j, and T = ¥; ¥, m;; =Total of all marks.
In Fletcher-Reeves method [5], we used first partial derivatives,
as

3o = ~2X,(pymi; —ag) fori=1.2,..,N (2.1.7)

das T:
0, = % 2my(pymy; — ai) + Ti 2mip (Pamyn — a;) (— ;:;')

forj=12,..,n—1 (2.1.8)
The results for average marks a; and the adjustment factors p; for the examination marks table-1,

using Fletcher-Reeves optimization method, we found the optimal values of the variables @, and

J N and these optimal values are presented in column (b) of the Table-2 and Table-3 respectively.

2.2 Some Refinements in the Loss Function using Broyden’s Method (1)

It is supposed that the adjustment factor p; should be close to one. To ensure this, we modify the
loss function [1,2], with a penalty component ¢,

2 z
Sy =X Xj(pymij —a;)” +cZi(p; — 1) 22.1)
Here if ¢ = 0, then we get the same as above eq. (2.1.1) or eq. (2.1.6) and if ¢ — o0, p; = 1 and
we just calculate the straight average of each candidate as usual.

Now the Lagrangian function for eq. (2.2.1) and the constraint eq. (2.1.2), we get,

2 2

Ly =% Ej(pymy — a;)” + e X(p; — 1.0)" + 24X, 5 my; (p; — 1.0) (222)

This leads to the equations a; = 21% (2.2.3)
_ Ei“i’mfj"'jzimij"'ﬂ

and pi = W {224]

The constraint can be readily used to eliminate one of the variables (p,, say). We have

2
5 = z Z(P}mu - a;)
[

With =T _ynip L 225
1t pn_]" Z}:]p;vf- { el ]
n n
where T; = }; m;; =Total marks for paper j, and T = }; ¥; m;; =Total of all marks.

In Fletcher-Reeves method [5], we used first partial denivatives,

as,
a @y

g%: = X 2mj(pymi; — a;) + 2c(p; — 1.0) +

2 lz M (D My — ;) + (g — LD)} (_ )

forj=12,...,n—1. (22.7)
The results for average marks g; and the adjustment factors p; for the examination marks

=-2%,(pym;; —a;) fori = 1,2,..,N (2.2.6)

3|

table(1), using Fletcher-Reeves optimization method, we can find the optimal values of the

variables @, and p, ; and these optimal valucs are presented in column (c) of the Table-2 and

Table-3 respectively.
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2.3 Some Refinements in the Loss Function using Broyden’s Method (2)

For an effect of penalty component ¢, we should assume that ¢ should be m?, where mis a
typical mark (50 < ¢ < 90).

Values of around 2500-8000 seem reasonable although our calculations show that the outcome is
not too sensitive to the actual values of ¢.

Biggins [1,2,3] show that if we include a fictitious candidate who score ¢ on each paper so that
@ = cp (where p is the average valuc of pj) for that candidate.

Then the loss function becomes:

2 . N2
S; = XiZj(pjmij — ;) + c* Ei(p; —p) 23.1)
This leads to the equations a; = X; % (2.3.2)
1
_ Ziaimu+ﬂzf‘m‘-;—+c2;ﬁ
and pj = YomZ +c? (2.3.3)

In Fletcher-Reeves method we again used first partial derivatives,

as. .
0= ~2Zj(pymiy —a) fori=12,..,N (234
as, _
ﬁ = Ei Zm”!:pjmu - ﬁi) + 2c2 (IJ} — :E-‘) +
- - T
2(8iMin(Pamin — @) + ¢ (pn — P} (—72) (235)

forj=12,..,n—1
The results for average marks a;and the adjustment factors p; for the examination marks
provided, using Fletcher-Reeves optimization method, we can find the optimal values of the
variables a, and p, ; and these optimal values are presented in column (d) of the Table-2 and
Table-3 respectively.
2.4 Biggins® Alternative Method
To have a non-trivial solution for the loss function § mn eq. (2.1.1), we considered a constrained

optimization problem for the Broyden's method [4]. To get rid of the constraint eq. (2.1.2),
2
- 1.0)

where the parameters a; and p; to be minimized using optimization methods and with this loss

M Py
a;

Biggin’s [3], suggested the loss function as: §; = E;E,‘(

function, we again note that, if the matrix of marks is split into two blocks, then the
indeterminacy occurs again in each block separately. Thus, in such cases, one constraint is
imposed on each block to remove this indeterminacy. Therefore, to overcome this issue, we
consider a loss function in the form L(x) = e* —x — 1 with x = log (%) and L is a strictly
convex function, then the loss function S; becomes,

Sa = 5i %, = %8 log (FLH) - 1.0 @41)
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This leads to the equations a; = Ef% (24.2)
and 1/p; = 20Ul (243)
j

where n; is the total number of candidates taking paper j.

Limi;/a;

Let §; = 1/p; then §; = —~
1
The Fletcher-Reeves method required first partial derivatives,

"5“— - %(pymyfa} — 1/a;) fori =12,..,N (2.4.4)

a“’ = Si(my;/a; — 1/p;) forj = 1,2,. (2.4.5)
The results for average marks q; and the adjustment factors p; for the examination marks given
data 1n table (1), using Fletcher-Reeves optimization method [5], we can find the optimal values
of the variables @, and p, ; and these optimal values are presented in column (e) of the Table-2
and Table-3 respectively.
2.5 Biggins Modified Method with a Single Fictitious Candidate

A fictitious candidate ¢ as discussed in the previous section is included and assuming that there is
only one block, with p, =1 as a constraint throughout the block. So, including a fictitious

candidate the loss function can be written in the form

=3y, mij by Y L)
S4—EIEJL(IOQ( o ))-I—CELEJ.L(IOQ (m))' (2.5.1)
Again, we take, L(x) = é* — x — 1 then we have the loss function as

5= T TS o (P42) -0+

¢(2 () - 21og () - 1) (252)

The Fletcher-Reeves method required first partial derivatives,

—¥,(pjmy/al —1/a;) fori =12,..,N (25.3)
‘”3 = Yi(myfa; = 1/p;) + £:(1.0 = 1/p)), for j = 1,2, .., n. (2.5.4)

The results for average marks a; and the adjustment factars p; for the examination marks exam
data table (1), using Fletcher-Reeves optimization method [5], we can find the optimal values of
the variables a, and p, ; and these optimal values are presented in column (f) of the Table-2 and

Table-3 respectively.

I11.  Numerical Results and Comparison of Different Methods
The methods from sections 2.1 to section 2.5 were applied for the examination marks data. There were 25
students, and each student took three papers from the given set of eight papers and the paper one was a
compulsory for each candidate.
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Table: 1. Sample data of marks for 25 candidates each taking 5 papers from 8 papers.

Candidates Papers IAverage for
Student
1 2 3 4 5 6 7 8
1 75 - 53 - - 35 - - 54.33
2 32 - - 30 - 30 - - 30.67
3 41 34 - 33 - - - - 36.00
4 42 67 58 - - - - - 55.67
5 42 - - 52 - 16 - - 36.67
6 44 51 - - - - 61 - 52.00
7 45 54 - 64 - - - - 54.33
8 48 51 - - 40 - - - 46.33
9 48 43 31 - - - - - 40.67
10 49 36 46 - - - - - 43.67
1 51 54 33 - - - - - 46.00
12 51 50 44 - - - - - 48.33
13 56 60 - - - - 56 - 57.33
14 57 - - 46 - 23 - - 42,00
15 57 69 - - 81 - - - 69.00
16 58 - - 55 - 37 - - 50.00
17 63 - 75 - 61 - - - 66.33
18 64 T - - 57 - - - 66.00
19 67 44 - - - - 67 - 59.33
20 67 72 - - - - 72 - 70.33
21 69 67 61 - - - - - 65.67
22 72 - - 59 - - - 35 55.33
23 78 67 - - 66 - - - 70.33
24 86 84 74 - - - - - 81.33
25 73 - 63 - - 51 - - 62.33
Average in 57.4 57.6 53.8 48.4 61.0 320 64.0 35.0
Papers

The methods discussed above from section 2.1 to section 2.5, were applied using Fletcher-Reeves optimization
method for finding the overall averages a; are presented in table 2 and the adjustment factors p; in table 3 for
the students in the forms of columns from (a) to (f), respectively.

Table: 2. The averages a;, for the 25 candidates taking 3 papers out of 8. The columns (a)-(f) correspond
to different methods of finding average.

Candidates (@ (b) (c) (d) (©)] ®
1 54.33 60.65 59.52 59.46 61.56 59.96
2 30.67 35.09 33.83 33.67 35.74 33.94
3 36.00 34.15 34.26 34.27 33.97 34.25
4 55.67 55.06 55.66 55.79 55.10 55.71
5 36.67 37.97 37.16 37.02 38.27 37.24
6 52.00 47.81 48.98 49.01 146.94 48.59
7 54.33 51.51 51.60 51.56 51.30 51.46
8 46.33 44.82 45.49 45.56 44.80 45.54
9 40.67 39.81 40.21 40.31 39.73 40.33

10 43.67 43.24 43.63 43.72 43.25 43.78
11 46.00 44.95 45.43 45.54 44.85 45.53
12 48.33 47.58 48.06 48.17 47.55 48.18
13 57.33 53.01 54.18 54.24 52.13 53.86
14 42.00 44.45 43.42 43.28 44.87 43.57
15 69.00 67.18 68.26 68.34 67.34 68.27
16 50.00 54.83 53.22 53.00 55.59 53.38
17 66.33 67.16 67.82 67.88 67.73 68.10
18 66.00 63.84 64.81 64.92 63.82 64.85
19 59.33 54.64 55.88 55.91 53.66 55.56
20 70.33 64.94 66.42 66.48 63.85 66.00
21 65.67 64.70 65.34 65.49 64.67 65.50
22 55.33 62.56 56.72 56.09 61.89 55.43
23 70.33 68.16 69.15 69.26 68.17 69.26
24 81.33 80.07 80.87 81.06 80.02 81.06
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| 25 |62.33 ‘71.82 ‘70.09 ‘69.96 ‘73.18 |7o.51

Here in the above table every column represents the overall average marks a; :

(@) using the raw average marks for 25 candidates

(b) using the Broyden's method of section 2.1

(c) using Broyden's method with a single fictitious candidate scoring 40 marks (¢ = 40) on each paper of
section 2.2

(d) using Broyden's method with a modified loss (c =1600) of section 2.3

(e) using Biggins’ et al. (1986) alternative method of section 2.4

(f)  using Biggins’ et al. (1986) modified method (taking ¢ = 1.0) of section 2.5

Students Averages for Different Methods

55
50
45
40
35
30
25
20
15
10

3

0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M (a) Average M (b) Method 2.1 m(c) Method 2.2 i (d) Method 2.3 m(e)Method 2.4 = (f) Method 2.5

Table:3 The adjustment factors, Pj, for papers from 1 to paper 8 and the columns (a) to (f) corresponds
to different methods.

Papers @ ©) © @ © G
1 1.0 0.95 0.96 0.96 0.94 0.97
2 1.0 0.95 0.97 0.97 0.94 0.96
3 1.0 1.06 1.07 1.07 1.08 1.07
4 1.0 0.95 0.93 0.92 0.95 0.92
5 1.0 1.01 1.03 1.03 1.03 1.03
6 1.0 1.55 1.43 1.42 1.62 1.44
7 1.0 0.87 0.91 0.91 0.84 0.89
8 1.0 1.81 1.32 1.28 1.77 1.20

Here in the above table every column represents the adjustment factor pj :

(@) using the raw average marks for 25 candidates

(b) using Broyden's method of section 2.1

(c) using Broyden's method with a single fictitious candidate scoring 40 marks (¢ = 40) on each paper of
section 2.2

(d) using Broyden's method with a modified loss (c =1600) of section 2.3

(e) using Biggins’ et al. (1986) alternative method of section 2.4

(f)  using Biggins’ et al. (1986) modified method (taking ¢ = 1.0) of section 2.5
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Adjustment Factor Pj

1 2 3 4 5 6 7 8

mPj(a) mPj(b) mPjlc) mPj{d) mPjfe) mFjf)

OO0DOO000 PR P
(0 e P L e L T o 16D LD e P 0 o T € e D LD P

IV.  Discussion and Conclusion

A comparative analysis shows that paper-6 and Paper-8 may be difficult, or the examiner may be tough
enough or the exam was from out of contents or were less popular because the students taking these papers were
in fact having above average marks in other papers except these two. For example, the student-22, scored 72%
(paper average: 57%) in the compulsory paper-1, 59% (paper average: 48%) in paper-4, and was the only who
took paper-8 but scored on 35%. It shows that the student was excellent but due to taking an unpopular paper-8,
he got only average 55%. Hence, he may be given some compensation or some extra benefits in average marks.

Similarly, the student-25, scored 73% (paper average: 57%) in the compulsory paper-1, 63% (paper
average: 54%) in paper-3, and scored 51% in paper-6 (paper average: 32%). It shows that the student was also
an excellent but due to taking an unpopular paper-6, he got only average 62%. Hence, he may be given some
compensation or some extra benefits in average marks.

The paper-7 was although less popular but probably the paper was much easier or the examiner might
be generous, because all those students, who took this paper-7 got above average marks. Hence, those student’s
average marks may be deducted who took paper-7.

We also noted that higher the number of compulsory papers, the differences in the averages using
different method may be very small or ignorable. Whereas, if most of the papers/subjects are optional then the
scaling process may produce large differences in the averages of the students. We reached to the conclusion that
scaling methods give a fair indication of the abilities of the students/candidates.
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