Applications of Optimization Methods in Finding the Overall Average in Examination Marks

Khizar H. Khan ${ }^{1}$, Mohammad Ibrahim Abdullah Aloqayli ${ }^{2}$, Rajagopalan Ramaswamy ${ }^{3}$
Department of Mathematics, College of Science and Humanities in Al Kharj, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11942, Saudi Arabia
Email: k.khan@psau.edu.sa,m.aloqayli@hotmail.com Correspondence : r.gopalan@psau.edu.sa

Abstract

We present some refinements for finding the averages in examination marks. In many high-level examinations, students take different courses from different disciplines. The results are prepared from the marks of different courses of their study without considering the marks have received through a fair process. In this paper, different methods are considered for finding the averages of the subjects taken by the candidates. We only consider the averages of the marks and give them the grades. Assume that N candidates take q papers from a total number of n papers. Let $m_{i j}$ be the mark scored by candidate i on paper j and each paper is assumed to have equal weighting in the overall assessment. To harmonize standards across all papers, an adjustment parameter p_{j} (multiplicative) for papers j is introduced along with an 'average' assessment a_{i} for candidate i. The parameters a_{i} and p_{j} are calculated by minimizing a loss function which represents the disagreement between the actual marks and proposed average assessments. In MATLAB, some defined routines are available for minimization of constrained optimization problem (fminsearch, fmincon etc) to compute the parameters, but here we used own MATLAB programs using Fletcher-Reeves (FR) method for the raw data set of examination marks table-1.

Keywords: Fletcher-Reeves, parameter computations; Broyden's and Biggin's scaling of examination marks.

I. Introduction

In this paper we are interested in measuring the overall average of a student or, in a general to check the ability of a student, so that a weak performance in one paper may be compensated by a strong performance in another paper.

Examinations usually consist of several components. We are interested to find a fair and harmonious way of deriving overall marks from a set of components. Here, we assume that the component marks have been received through a fair process and the only problem that we will apply, is that of combining them fairly and consistently.

One method that is often used is that of simply adding the component marks together to get the overall mark. This assumes that the components are all equally important and are also treated equally. For combining these courses, the candidates may have some core courses, optional courses, or some specialties in pure, Applied, Computational Mathematics, Statistics or studying several special types.

The result is a set of assessments in which not every candidate takes every paper. Yet for the purpose of ranking the candidates and classifying their degrees, a single overall 'average' mark must be assigned to each candidate. It is assumed that each of N candidates take q papers which are selected from a total numbers of n papers. The mark scored by candidate i on paper j is $m_{i j}$ and each paper is assumed to have equal weighting in the overall assessment. Of course, $m_{i j}$ only exists for certain pairs. The papers will vary in their intrinsic difficulty and the examiners in their generosity. The overall ability can be regarded as some function of the component marks in the individual topics.

To harmonize standards across all papers, an adjustment parameter p_{j} (multiplicative) for paper j is introduced, along with an 'average' measure a_{i} for candidate i. These parameters are calculated by minimizing a loss function which represents the disagreement between the scaled marks and the ability of the candidates. This idea was used by [6] in a somewhat different context. Murgatroyd $([6,8])$ also followed this philosophy although he mainly considered additive adjustments.

II. Computation of the parameters

2.1 Broyden's Method

A simple form the loss function which treats all candidates and all papers on the same basis is the one proposed by $[1,4]$,

$$
\begin{equation*}
S=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2} \tag{2.1.1}
\end{equation*}
$$

We choose P_{j} and a_{i} to minimize this loss function S. Unfortunately, the solution to this problem is $p_{j}=0$, and $a_{i}=0$ for all i and j. Thus following [1, 4], we considered a constraint that the total of the marks remains the same after multiplying the adjustment factor p_{j}. Thus, we have
$\sum_{i} \sum_{j} m_{i j}=\sum_{i} \sum_{j} p_{j} m_{i j}$
Using (1) and (2) we can construct the Lagrangian
$L=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2}-2 \lambda \sum_{i} \sum_{j} m_{i j}\left(p_{j}-1.0\right)$
This leads to the equations $\quad a_{i}=\sum_{j} \frac{m_{i j} p_{j}}{n_{i}}$

$$
\begin{equation*}
\text { and } p_{j}=\frac{\sum_{i} a_{i} m_{i j}+\lambda \sum_{i} m_{i j}}{\sum_{i} m_{i j}^{2}} \tag{2.1.4}
\end{equation*}
$$

Where n_{i} is the number of papers taken by candidate i.
It is very important to state that there may be 100-200 candidates each taking 8 (say) options from given 30-60 papers.
The adjustment factor $p_{j}(j=1, \ldots, n)$ for each paper and $a_{i}(i=1, \ldots, N)$ for each candidate it would not be unusual to have a constrained optimization problem higher number of variables. For this reason, we normally preferred Fletcher-Reeves optimization method [5], to obtain the solution to the problem which uses function values and gradient only at each iteration, posed by [8,9].

Whereas the variable metric methods such as Davidon-Fletcher-Powell (DFP) or Broyden-Fletcher-Goldfarb-Shanno (BFGS), need the Hessian matrix, which gets updated at each iteration. Fletcher-Reeves methos [5], is an iterative method which searches along a set of mutually conjugate directions. To construct the next search direction, we need the current gradient g_{k+1} and the last search direction d_{k} (which is stored),

Where

$$
d_{k+1}=-g_{k+1}+\alpha_{k} d_{k}
$$

$$
\alpha_{k}=\frac{\left\|g_{k+1}\right\|^{2}}{\left\|g_{k}\right\|^{2}}
$$

and d_{k+1} is the current search direction.

Since the constraint can be readily used to eliminate one of the variables (p_{n} say). We have

$$
\begin{equation*}
S=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2} \text { with } p_{n}=\frac{T}{T_{n}}-\sum_{j=1}^{n-1} p_{j} \frac{T_{j}}{T_{n}} \tag{2.1.6}
\end{equation*}
$$

where $T_{j}=\sum_{i} m_{i j} \equiv$ Total marks for paper j , and $T=\sum_{j} \sum_{i} m_{i j} \equiv$ Total of all marks.
In Fletcher-Reeves method [5], we used first partial derivatives,

$$
\begin{align*}
& \frac{\partial S}{\partial a_{i}}=-2 \sum_{j}\left(p_{j} m_{i j}-a_{i}\right) \text { for } i=1,2, \ldots, N \tag{2.1.7}\\
& \frac{\partial S}{\partial p_{j}}=\sum_{i} 2 m_{i j}\left(p_{j} m_{i j}-a_{i}\right)+\sum_{i} 2 m_{i n}\left(p_{n} m_{i n}-a_{i}\right)\left(-\frac{T_{j}}{T_{n}}\right) \\
& \text { for } j=1,2, \ldots, n-1 . \tag{2.1.8}
\end{align*}
$$

The results for average marks a_{i} and the adjustment factors p_{j} for the examination marks table-1, using Fletcher-Reeves optimization method, we found the optimal values of the variables a_{i} and p_{j}; and these optimal values are presented in column (b) of the Table- 2 and Table- 3 respectively.

2.2 Some Refinements in the Loss Function using Broyden's Method (1)

It is supposed that the adjustment factor p_{j} should be close to one. To ensure this, we modify the loss function $[1,2]$, with a penalty component c ,
$\mathrm{S}_{1}=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2}+c \sum_{j}\left(p_{j}-1\right)^{2}$
Here if $c=0$, then we get the same as above eq. (2.1.1) or eq. (2.1.6) and if $c \rightarrow \infty, p_{j}=1$ and we just calculate the straight average of each candidate as usual.
Now the Lagrangian function for eq. (2.2.1) and the constraint eq. (2.1.2), we get,
$L_{1}=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2}+c \sum_{j}\left(p_{j}-1.0\right)^{2}+2 \lambda \sum_{i} \sum_{j} m_{i j}\left(p_{j}-1.0\right)$
This leads to the equations $a_{i}=\sum_{j} \frac{m_{i j} p_{j}}{n_{i}}$
and

$$
\begin{equation*}
p_{j}=\frac{\sum_{i} a_{i} m_{i j}+\lambda \sum_{i} m_{i j}+c}{\sum_{i} m_{i j}^{2}+c} \tag{2.2.3}
\end{equation*}
$$

The constraint can be readily used to eliminate one of the variables (p_{n} say). We have

$$
S_{1}=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2}
$$

With

$$
\begin{equation*}
p_{n}=\frac{T}{T_{n}}-\sum_{j=1}^{n-1} p_{j} \frac{T_{j}}{T_{n}} \tag{2.2.5}
\end{equation*}
$$

where $T_{j}=\sum_{i} m_{i j} \equiv$ Total marks for paper j , and $T=\sum_{j} \sum_{i} m_{i j} \equiv$ Total of all marks.
In Fletcher-Reeves method [5], we used first partial derivatives,

$$
\begin{align*}
& \frac{\partial S_{1}}{\partial a_{i}}=-2 \sum_{j}\left(p_{j} m_{i j}-a_{i}\right) \text { for } i=1,2, \ldots, N \tag{2.2.6}\\
& \frac{\partial s_{1}}{\partial p_{j}}=\sum_{i} 2 m_{i j}\left(p_{j} m_{i j}-a_{i}\right)+2 c\left(p_{j}-1.0\right)+ \\
& \qquad 2\left\{\sum_{i} m_{i n}\left(p_{n} m_{i n}-a_{i}\right)+c\left(p_{n}-1.0\right)\right\}\left(-\frac{T_{j}}{T_{n}}\right) \tag{2.2.7}
\end{align*}
$$

The results for average marks a_{i} and the adjustment factors p_{j} for the examination marks table(1), using Fletcher-Reeves optimization method, we can find the optimal values of the variables a_{i} and p_{j}; and these optimal values are presented in column (c) of the Table-2 and Table-3 respectively.

2.3 Some Refinements in the Loss Function using Broyden's Method (2)

For an effect of penalty component c , we should assume that c should be m^{2}, where m is a typical mark ($50<c<90$).
Values of around 2500-8000 seem reasonable although our calculations show that the outcome is not too sensitive to the actual values of c .

Biggins $[1,2,3]$ show that if we include a fictitious candidate who score c on each paper so that $a=c \bar{p}$ (where \bar{p} is the average value of p_{j}) for that candidate.

Then the loss function becomes:
$\mathrm{S}_{2}=\sum_{i} \sum_{j}\left(p_{j} m_{i j}-a_{i}\right)^{2}+c^{2} \sum_{j}\left(p_{j}-\bar{p}\right)^{2}$
This leads to the equations $a_{i}=\sum_{j} \frac{m_{i j} p_{j}}{n_{i}}$
and

$$
\begin{equation*}
p_{j}=\frac{\sum_{i} a_{i} m_{i j}+\lambda \sum_{i} m_{i j}+c^{2} \bar{p}}{\sum_{i} m_{i j}^{2}+c^{2}} \tag{2.3.2}
\end{equation*}
$$

In Fletcher-Reeves method we again used first partial derivatives,

$$
\begin{align*}
& \frac{\partial S_{2}}{\partial a_{i}}=-2 \sum_{j}\left(p_{j} m_{i j}-a_{i}\right) \text { for } i=1,2, \ldots, N \tag{2.3.4}\\
& \frac{\partial S_{2}}{\partial p_{j}}=\sum_{i} 2 m_{i j}\left(p_{j} m_{i j}-a_{i}\right)+2 c^{2}\left(p_{j}-\bar{p}\right)+ \\
& 2\left\{\sum_{i} m_{i n}\left(p_{n} m_{i n}-a_{i}\right)+c^{2}\left(p_{n}-\bar{p}\right)\right\}\left(-\frac{T_{j}}{T_{n}}\right) \tag{2.3.5}\\
& \text { for } j=1,2, \ldots, n-1 .
\end{align*}
$$

The results for average marks a_{i} and the adjustment factors p_{j} for the examination marks provided, using Fletcher-Reeves optimization method, we can find the optimal values of the variables a_{i} and p_{j}; and these optimal values are presented in column (d) of the Table-2 and Table-3 respectively.

2.4 Biggins' Alternative Method

To have a non-trivial solution for the loss function S in eq. (2.1.1), we considered a constrained optimization problem for the Broyden's method [4]. To get rid of the constraint eq. (2.1.2), Biggin's [3], suggested the loss function as: $S_{3}=\sum_{i} \sum_{j}\left(\frac{m_{i j} p_{j}}{a_{i}}-1.0\right)^{2}$ where the parameters a_{i} and p_{j} to be minimized using optimization methods and with this loss function, we again note that, if the matrix of marks is split into two blocks, then the indeterminacy occurs again in each block separately. Thus, in such cases, one constraint is imposed on each block to remove this indeterminacy. Therefore, to overcome this issue, we consider a loss function in the form $L(x)=e^{x}-x-1$ with $x=\log \left(\frac{m p}{a}\right)$ and L is a strictly convex function, then the loss function S_{3} becomes,

$$
\begin{equation*}
S_{3}=\sum_{i} \sum_{j} \frac{m_{i j} p_{j}}{a_{i}}-\sum_{i} \sum_{j} \log \left(\frac{m_{i j} p_{j}}{a_{i}}\right)-1.0 \tag{2.4.1}
\end{equation*}
$$

This leads to the equations $a_{i}=\sum_{j} \frac{m_{i j} p_{j}}{n_{i}}$
and

$$
\begin{equation*}
1 / p_{j}=\frac{\sum_{i} m_{i j} / a_{i}}{n_{j}} \tag{2.4.2}
\end{equation*}
$$

where n_{j} is the total number of candidates taking paper j .
Let $\beta_{j}=1 / p_{j}$ then $\beta_{j}=\frac{\sum_{i} m_{i j} / a_{i}}{\mathrm{n}_{\mathrm{j}}}$.
The Fletcher-Reeves method required first partial derivatives,

$$
\begin{align*}
& \frac{\partial S_{3}}{\partial a_{i}}=-\sum_{j}\left(p_{j} m_{i j} / a_{i}^{2}-1 / a_{i}\right) \text { for } i=1,2, \ldots, N \tag{2.4.4}\\
& \frac{\partial S_{3}}{\partial p_{j}}=\sum_{i}\left(m_{i j} / a_{i}-1 / p_{j}\right) \text { for } j=1,2, \ldots, n . \tag{2.4.5}
\end{align*}
$$

The results for average marks a_{i} and the adjustment factors p_{j} for the examination marks given data in table (1), using Fletcher-Reeves optimization method [5], we can find the optimal values of the variables a_{i} and p_{j}; and these optimal values are presented in column (e) of the Table-2 and Table- 3 respectively.

2.5 Biggins Modified Method with a Single Fictitious Candidate

A fictitious candidate c as discussed in the previous section is included and assuming that there is only one block, with $p_{1}=1$ as a constraint throughout the block. So, including a fictitious candidate the loss function can be written in the form

$$
\begin{equation*}
S_{4}=\sum_{i} \sum_{j} L\left(\log \left(\frac{m_{i j} p_{j}}{a_{i}}\right)\right)+c \sum_{i} \sum_{j} L\left(\log \left(\frac{p_{j}}{p_{1}}\right)\right) \tag{2.5.1}
\end{equation*}
$$

Again, we take, $L(x)=e^{x}-x-1$ then we have the loss function as

$$
\begin{align*}
& S_{4}=\sum_{i} \sum_{j} \frac{m_{i j} p_{j}}{a_{i}}-\sum_{i} \sum_{j} \log \left(\frac{m_{i j} p_{j}}{a_{i}}\right)-1.0+ \\
& \quad c\left(\sum_{j}\left(\frac{p_{j}}{p_{1}}\right)-\sum_{j} \log \left(\frac{p_{j}}{p_{1}}\right)-1\right) \tag{2.5.2}
\end{align*}
$$

The Fletcher-Reeves method required first partial derivatives,

$$
\begin{align*}
& \frac{\partial S_{3}}{\partial a_{i}}=-\sum_{j}\left(p_{j} m_{i j} / a_{i}^{2}-1 / a_{i}\right) \text { for } i=1,2, \ldots, N \tag{2.5.3}\\
& \frac{\partial S_{3}}{\partial p_{j}}=\sum_{i}\left(m_{i j} / a_{i}-1 / p_{j}\right)+\sum_{i}\left(1.0-1 / p_{j}\right), \text { for } j=1,2, \ldots, n . \tag{2.5.4}
\end{align*}
$$

The results for average marks a_{i} and the adjustment factors p_{j} for the examination marks exam data table (1), using Fletcher-Reeves optimization method [5], we can find the optimal values of the variables a_{i} and p_{j}; and these optimal values are presented in column (f) of the Table-2 and Table-3 respectively.

III. Numerical Results and Comparison of Different Methods

The methods from sections 2.1 to section 2.5 were applied for the examination marks data. There were 25 students, and each student took three papers from the given set of eight papers and the paper one was a compulsory for each candidate.

Table: 1. Sample data of marks for 25 candidates each taking 5 papers from 8 papers.

Candidates	Papers								Average for Student
	1	2	3	4	5	6	7	8	
1	75	-	53	-	-	35	-	-	54.33
2	32	-	-	30	-	30	-	-	30.67
3	41	34	-	33	-	-	-	-	36.00
4	42	67	58	-	-	-	-	-	55.67
5	42	-	-	52	-	16	-	-	36.67
6	44	51	-	-	-	-	61	-	52.00
7	45	54	-	64	-	-	-	-	54.33
8	48	51	-	-	40	-	-	-	46.33
9	48	43	31	-	-	-	-	-	40.67
10	49	36	46	-	-	-	-	-	43.67
11	51	54	33	-	-	-	-	-	46.00
12	51	50	44	-	-	-	-	-	48.33
13	56	60	-	-	-	-	56	-	57.33
14	57	-	-	46	-	23	-	-	42.00
15	57	69	-	-	81	-	-	-	69.00
16	58	-	-	55	-	37	-	-	50.00
17	63	-	75	-	61	-	-	-	66.33
18	64	77	-	-	57	-	-	-	66.00
19	67	44	-	-	-	-	67	-	59.33
20	67	72	-	-	-	-	72	-	70.33
21	69	67	61	-	-	-	-	-	65.67
22	72	-	-	59	-	-	-	35	55.33
23	78	67	-	-	66	-	-	-	70.33
24	86	84	74	-	-	-	-	-	81.33
25	73	-	63	-	-	51	-	-	62.33
Average in Papers	57.4	57.6	53.8	48.4	61.0	32.0	64.0	35.0	

The methods discussed above from section 2.1 to section 2.5 , were applied using Fletcher-Reeves optimization method for finding the overall averages a_{i} are presented in table 2 and the adjustment factors p_{j} in table 3 for the students in the forms of columns from (a) to (f), respectively.

Table: 2. The averages a_{i}, for the 25 candidates taking 3 papers out of 8 . The columns (a)-(f) correspond to different methods of finding average.

Candidates	(a)	(b)	(c)	(d)	(e)	(f)
1	54.33	60.65	59.52	59.46	61.56	59.96
2	30.67	35.09	33.83	33.67	35.74	33.94
3	36.00	34.15	34.26	34.27	33.97	34.25
4	55.67	55.06	55.66	55.79	55.10	55.71
5	36.67	37.97	37.16	37.02	38.27	37.24
6	52.00	47.81	48.98	49.01	46.94	48.59
7	54.33	51.51	51.60	51.56	51.30	51.46
8	46.33	44.82	45.49	45.56	44.80	45.54
9	40.67	39.81	40.21	40.31	39.73	40.33
10	43.67	43.24	43.63	43.72	43.25	43.78
11	46.00	44.95	45.43	45.54	44.85	45.53
12	48.33	47.58	48.06	48.17	47.55	48.18
13	57.33	53.01	54.18	54.24	52.13	53.86
14	42.00	44.45	43.42	43.28	44.87	43.57
15	69.00	67.18	68.26	68.34	67.34	68.27
16	50.00	54.83	53.22	53.00	55.59	53.38
17	66.33	67.16	67.82	67.88	67.73	68.10
18	66.00	63.84	64.81	64.92	63.82	64.85
19	59.33	54.64	55.88	55.91	53.66	55.56
20	70.33	64.94	66.42	66.48	63.85	66.00
21	65.67	64.70	65.34	65.49	64.67	65.50
22	55.33	62.56	56.72	56.09	61.89	55.43
23	70.33	68.16	69.15	69.26	68.17	69.26
24	81.33	80.07	80.87	81.06	80.02	81.06

25	62.33	71.82	70.09	69.96	73.18	70.51

Here in the above table every column represents the overall average marks a_{i} :
(a) using the raw average marks for 25 candidates
(b) using the Broyden's method of section 2.1
(c) using Broyden's method with a single fictitious candidate scoring 40 marks $(c=40)$ on each paper of section 2.2
(d) using Broyden's method with a modified loss $(c=1600)$ of section 2.3
(e) using Biggins' et al. (1986) alternative method of section 2.4
(f) using Biggins' et al. (1986) modified method (taking $c=1.0$) of section 2.5

Table: 3 The adjustment factors, p_{j}, for papers from 1 to paper 8 and the columns (a) to (f) corresponds to different methods.

Papers	(a)	(b)	(c)	(d)	(e)	(f)
1	1.0	0.95	0.96	0.96	0.94	0.97
2	1.0	0.95	0.97	0.97	0.94	0.96
3	1.0	1.06	1.07	1.07	1.08	1.07
4	1.0	0.95	0.93	0.92	0.95	0.92
5	1.0	1.01	1.03	1.03	1.03	1.03
6	1.0	0.85	1.43	1.42	1.62	1.44
7	1.81	1.32	0.91	0.82	0.89	
8	1.0		1.28	1.20		

Here in the above table every column represents the adjustment factor p_{j} :
(a) using the raw average marks for 25 candidates
(b) using Broyden's method of section 2.1
(c) using Broyden's method with a single fictitious candidate scoring 40 marks $(c=40)$ on each paper of section 2.2
(d) using Broyden's method with a modified loss $(c=1600)$ of section 2.3
(e) using Biggins' et al. (1986) alternative method of section 2.4
(f) using Biggins' et al. (1986) modified method (taking $c=1.0$) of section 2.5

IV. Discussion and Conclusion

A comparative analysis shows that paper-6 and Paper-8 may be difficult, or the examiner may be tough enough or the exam was from out of contents or were less popular because the students taking these papers were in fact having above average marks in other papers except these two. For example, the student-22, scored 72% (paper average: 57%) in the compulsory paper-1, 59% (paper average: 48%) in paper- 4 , and was the only who took paper- 8 but scored on 35%. It shows that the student was excellent but due to taking an unpopular paper-8, he got only average 55%. Hence, he may be given some compensation or some extra benefits in average marks.

Similarly, the student-25, scored 73% (paper average: 57%) in the compulsory paper $-1,63 \%$ (paper average: 54%) in paper-3, and scored 51% in paper-6 (paper average: 32%). It shows that the student was also an excellent but due to taking an unpopular paper-6, he got only average 62%. Hence, he may be given some compensation or some extra benefits in average marks.

The paper-7 was although less popular but probably the paper was much easier or the examiner might be generous, because all those students, who took this paper-7 got above average marks. Hence, those student's average marks may be deducted who took paper-7.

We also noted that higher the number of compulsory papers, the differences in the averages using different method may be very small or ignorable. Whereas, if most of the papers/subjects are optional then the scaling process may produce large differences in the averages of the students. We reached to the conclusion that scaling methods give a fair indication of the abilities of the students/candidates.

Acknowledgement

The authors are thankful to the Deanship of Scientific Research, PSAU, Alkharj for the support extended.

References

[1]. Biggins, J.D. Loynes, R.M. and Walker, A.N. (1986). Combining Examination marks. Brit. J. Math. Statist. Psych. 39, 150167.
[2]. Biggins, J.D. and Yue, K.K. (1993). Scaling and combining examination marks. Brit. J. Math. Statist. Psych. 46, 153-179.
[3]. Biggins, J.D. and Yue, K.K. (1995). A likelihood approach to scaling examination marks. Austral. J. Statist. 37, 273282.
[4]. Broyden, C.G. (1983). A mark-scaling algorithm. The Computer Journal, 26, 109-112.
[5]. Fletcher R, Reeves C M, (1964). "Function minimization by conjugate gradients," The Computer Journal, 7, 149-154.
[6]. Healy, M.J.R. and Goldstein, H. (1976. An approach to the scaling of the categorized and attributes. Biomertrika 63, 219-229.
[7]. Khizar H. Khan (2012). The Comparison and Scaling of Student assessment Marks in Several Subjects Using Optimization methods. International Journal of Computational Science and Mathematics (IJCSM), ISSN 0974-3189 Volume 4, Number 2 (2012), pp. 69-76.
[8]. Murgatroyd, P.N (1975). An adjustment procedure for examination marks in optional subjects. International Journal of Mathematics Education in science technology, 6,435-444.
[9]. Murgatroyd, P.N. (1979). Least squares estimation applied to a procedure for adjusting examination marks. International Journal of Mathematics Education in science technology. 10, 102-105.

