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Abstract: In the field of machine learning, Generative Adversarial Networks (GANs) have arisen as an influential 

tool demonstrating exceptional capabilities in generating synthetic data that closely comply with real-world 

samples. The last decade has seen remarkable advances in speech, image and language recognition tools that 

have been made available to the public through computer and mobile devices’ ap-plications in broad area of 

sciences, including Chemical Engineering. In this pa-per, existing and future potential applications of GANs in 

Chemical Engineering have been given in detail. GANs have a strong potential to revolutionize in chem-ical 

engineering and its multiple subfields such as process optimization, molecular design, and materials science. 

Based on the searches on recent literature and case studies, generating realistic molecular structures, fault 

diagnosis and predicting chemical properties, optimizing process parameters, and designing novel materi-als are 

some of the GANs applications in chemical engineering. Challenges and opportunities associated with the 

integration of GANs into traditional chemical engineering workflows have also been discussed. Additionally, 

future potential applications of GANs have been examined with examples, in this paper. 
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I. INTRODUCTION  

Generative Adversarial Networks, or GANs for short, are an approach to generative modeling using deep 

learning methods, such as convolutional neural networks. Generative modeling is an unsupervised learning task 

in machine learning that involves automatically discovering and learning the regularities or patterns in input data 

in such a way that the model can be used to generate or output new examples that plausibly could have been drawn 

from the original dataset. GANs are a class of Deep Neural Networks that have the ability to generate realistic 

synthetic data including but not limited to images, text, or even videos. As a result of these revolutionary 

developments, Generative AI is transforming the field of chemical engineering, enabling researchers and 

engineers to achieve higher levels of efficiency, reduce costs, and drive innovation in the chemical industry. 

Generative Adversarial Networks (GANs) is one of the most popular approaches used in Generative AI, providing 

researchers with a powerful tool for designing novel chemical compounds, optimizing process parameters, and 

designing innovative materials.  

A GAN uses a decoder (or generator) and discriminator to learn the materials data distribution implicitly. 

In GAN approaches, a key component of crystal structural generative models is the invertibility from material 

representation (features) to real structure of material since the features generated from the latent vector should 

eventually be inverted back to the real structure of material in order to confirm the generated material [1, 2]. A 

generative adversarial network (GAN) employed for crystal structure generation using a coordinate-based crystal 

representation inspired by point clouds [3]. By conditioning the network with the crystal composition, the 

proposed model generated materials with a desired chemical composition. As an application in this model, GAN 

architecture applied to generate new Mg−Mn−O ternary compounds to find potential photoanode materials and 

discovered 23 new crystal compounds with reasonable stability in an aqueous environment and band gap. 

Stacked denoising autoencoders (SDAE) combined with GAN for planetary gearbox fault pattern 

recognition with limited fault samples and strong noise interference [4]. An auxiliary classifier GAN (ACGAN) 

model developed to learn from mechanical sensor signals and generate realistic one-dimensional raw data and 

used a CNN classifier to output the machine fault diagnosis result [5]. A supervised classifier framework with 

GAN introduced to increase the number of faulty training samples and re-balance the training dataset and 

performed robust fault diagnosis for air handling units [6]. An enhanced ACGAN built with deep neural network 

(DNN) to solve imbalanced problems and classify the chemical process faults [7]. A high-efficiency GAN model 

(HGAN) proposed for chemical process fault diagnosis [8]. HGAN integrates the advantages of Wasserstein GAN 
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and Auxiliary Classifier GAN to promote the generating model training stability and the discriminative model 

training efficiency with Bayesian optimization. 

A vast number of organic molecules are applied in solar cells, such as organic light emitting diodes, 

conductors, and sensors [9]. Synthesis of new organic and inorganic compounds is a challenge in physics, 

chemistry and in materials science. A number of machine learning approaches were proposed to facilitate the 

search for novel stable compositions [10]. There was an attempt to find new compositions using an inorganic 

crystal structure database, and to estimate the probabilities of new candidates based on compositional similarities. 

A learning method called CrystalGAN proposed to discover cross-domain relations in real data, and to generate 

novel structures [11]. 

Near-infrared (NIR) spectroscopy has been widely used to predict the chemical properties of materials 

especially gasoline properties that are difficult to measure online during gasoline blending. NIR models should be 

prepared in advance to apply this technique successfully. Obtaining a high-accuracy NIR model in practice is hard 

because abundant labelled samples are difficult to acquire. The application of WGAN presented for the prediction 

of octane number by NIR spectroscopy. It is observed that when labelled data are insufficient during gasoline 

blending, the proposed method can help to establish an initial NIR model quickly [12]. 

In this paper, detailed literature search results have been given for the main application areas of 

Generative Adversarial Networks on Chemical Engineering. The main aim of this work is to provide a milestone 

point to the reseachers who want to apply GANs to their future researches in Chemical Engineering area. 

  

II. GANs APPLICATIONS IN CHEMICAL ENGINEERING  

Detailed representations of three different GANs applications have been given in detail. 

 

1.1 Generative Adversarial Networks (GANs). 

In 2014, a groundbreaking paper by Ian Goodfellow et al. introduced the world to Generative Adversarial 

Networks (GANs). As depicted in Fig. 1, this ingenious technique revolutionized the field of artificial intelligence 

by creating a system that pits two neural networks against each other. One network, the generator, strives to create 

ever-more realistic data, be it images, music, or even 3D models. The other network, the watchful discriminator, 

aims to distinguish the generated creations from real-world samples. 

Figure1. GANs architecture. 

 

1.2 Generative Adversarial Networks for Crystal Structure Prediction 

One of the proposed GANs model [3] for Crystal Structure Prediction consists of three network 

components: a generator, a critic, and a classifier as shown in Fig. 2. The generator takes the random Gaussian 

noise vector (Z) and one-hot encoded composition vector (Cgen) as the input to generate new 2D-representations. 

The one-hot encoded composition vector is used as a condition to generate materials with target composition. The 

critic computes the Wasserstein distance which represents dissimilarity between the true and trained data 

distributions, and by reducing this distance the generator would generate more realistic materials. The critic 

network is composed of three-shared multilayers perceptions (MLPs) followed by average pooling layers to ensure 

the permutation invariance under the reordering of points in the 2D-representation. It is noted that the permutation 

invariance under the reordering of input is satisfied by using shared weight parameters and average pooling since 

the averaged value is unchanged under the change of orders. The classifier network, which outputs the 

composition vector from the input2D-representation, is used to ensure that the generated new materials meet the 

given composition condition. The loss of the classifier is back-propagated to the generator only if the generated 

2D-representation (x̃) is taken as input. 
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Figure2. GANs architecture for Crystal Structure Prediction [3]. 

 
 

Z, Cgen, and Creal denote a random input noise, user-desired composition condition, and composition 

of real material, respectively. The variables x̃ and x denote the feature (representation)of generated and real 

materials, respectively. Ĉgen and Ĉreal denote the predicted composition of the generated and real features, 

respectively. D(x) is the critic function also known as the critic network.  

As an application in this model, GAN architecture applied to generate new Mg−Mn−O ternary compounds to find 

potential photoanode materials and discovered 23 new crystal compounds with reasonable stability in an aqueous 

environment and band gap. 

 

1.3 Application of GANs In Chemical Process Fault Diagnosis 

Another one of the proposed GANs model used to fault diagnosis in a chemical process [8]. As given in 

Fig. 3., the proposed HGAN model incorporates the advantages of WGAN and ACGAN, which utilizes 

Wasserstein distance and gradient penalty to empower the generator training process, and adopts the Bayesian 

optimization strategy to enhance the discriminator performance. 

 

Figure3. ACGAN (HAGN) model structure for fault diagnosis. 

 

At the offline stage, raw data of the chemical process is collected including operation parameters and 

process parameters, which is subsequently divided into different sets for training and testing. After normalization 

and other necessary preprocessing steps, the training dataset is used to train the HGAN model and acquire the 

optimized parameters of the generator and the discriminator. The benchmark Tennessee Eastman process (TEP) 

simulator is applied to evaluate the performance of the proposed model. The experiments are conducted with small 

size of training samples under data balance and data imbalance conditions separately. The diagnosis results of 

HGAN are compared with a traditional statistical model. 

 

 

 



Generative Adversarial Networks (GANs) Applications in Chemical Engineering 

72 

1.4 Learning to Discover Crystallographic Structures with GANs 

As the last example, a CrystalGAN [11] which generates new chemically stable crystallographic 

structures with increased domain complexity will be given. The basic architecture of the CrystalGAN presented 

in Fig. 4. 

 

Figure4. CrystalGAN model architecture for discovering crystallographic structures. 

 

In this work [11], authors focus on applications of hydrogen storage, and in particular, the problem to 

investigate novel chemical compositions with stable crystals. Based on the CrystalGAN model architecture for 

discovering crystallographic structures, it is noted that although the CrystalGAN was developed and tested for 

applications in materials science, it is a general method where the constraints can be easily adapted to any scientific 

problem. 

 

III. CONCLUSION 

 Generative Adversarial Networks (GANs) have emerged as a powerful tool for Chemical Engineering, 

offering a glimpse into a generative future. Their ability to create realistic and intricate data holds immense 

potential for accelerating material discovery, optimizing processes, and empowering data-driven approaches. 

While challenges like data scarcity and model interpretability remain, advancements in machine learning and 

computational resources promise even more sophisticated applications in the coming years. By embracing GAN 

technology, Chemical Engineering can unlock entirely new avenues for innovation, leading to a more sustainable 

and efficient future for the industry. 
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