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Abstract: In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional calculus, we obtain three
arc length formulas of fractional differentiable plane curves in the form of parametric equation, fractional
analytic function, and polar coordinate equation. These formulas are generalizations of traditional arc length
formulas of differentiable plane curves. The main methods used in this paper are the product rule and the chain
rule for fractional derivatives. A new multiplication of fractional analytic functions plays an important role in
this study. On the other hand, some examples are given to illustrate our results.
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I. INTRODUCTION

In recent years, fractional calculus has been widely used in almost all branches of sciences and
engineering such as mechanics, dynamics, control theory, electrical engineering, economics, and physics [1-10].
Fractional calculus is a generalization of traditional calculus of integer order, but it is different from classical
calculus. There is no unique definition of fractional derivative and integral. Commonly used definitions include
Riemann Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald Letnikov (G-L) fractional
derivative, conformable fractional derivative, and Jumarie's modified R-L fractional derivative [1-3]. In
addition, the application of fractional calculus can be referred to [4-15].

In this paper, the arc length problem of fractional differentiable plane curve is studied. Based on
Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions, we can
obtain three arc length formulas of fractional plane curves in the form of parametric equation, fractional analytic
function and polar coordinate equation. In fact, the formulas we obtained are generalizations of the arc length
formulas of classical differentiable plane curves. Furthermore, the new multiplication is a natural opetation of
fractional analytic functions, and it plays an important role in this article. In addition, we give three examples to
illustrate our results.

Il. PRELIMINARIES
In the following, we introduce the fractional calculus used in this article.
Definition 2.1 ([16]): Assume that 0 < @ < 1, and ¢, is a real number. Then the Jumarie type of Riemann-
Liouville a-fractional derivative is defined by

1 d rt fO-f@
(PO = i oo Ty 4% - €

And the Jumarie type of Riemann-Liouville a-fractional integral is defined by
(WlFO] = = [ L. @

I'(a) “to (t-x)1~@
Where I'( ) is the gamma function.
Proposition 2.2 ([17]): If ty, a,B,C are real numbersand 8 = a > 0, then

(DIt = £0)7] = Bl (e = 1), ®
and
(;,DF)IC] = 0. @)

The following is the definition of fractional analytic function.
Definition 2.3 ([18]): If ¢, t,, and a, are real numbers for all k, t, € (a,b), and 0 < a < 1. If the function

fo:la, b] = R can be expressed as an a-fractional power series, i.e., f, ((t — t,)%) = Z,;“;Oﬁ(t — to)¥% on

some open interval (t, — r,t, + r), then we say that f,((t — t,)%) is a-fractional analytic at t,, where r is the
radius of convergence about t,. Moreover, if f,:[a, b] = R is continuous on closed interval [a, b] and it is a-
fractional analytic at every point in open interval (a, b), then we say that f, is an a-fractional analytic function
on [a, b].

Next, we define a new multiplication of fractional analytic functions.
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Definition 2.4 ([18]): Suppose that 0 < @ < 1, and t, is a real number. If f,((t — t,)%) and g, ((t — t,)%) are
two a-fractional analytic functions on an interval containing t,,

fult = t)) = 55 T +1)( — o) = T, 2 (L

9a((t = £)) = T oris (= £ = B2, % (5

t—t)7) (5)
E—t)7) . 6)

l"(a+1)

F'(a+1)
Then we define
fa((t = to)“) ® go((t —t5))
= S0 m (6= £0)* © iy iy (& — o)

1 k «
= Zk:o I'(ka+1) ( fn:O (m) Qje—m m) (t - tO)k ' (7)
In other words,

fa((t = t)*) @ go((t — tg)“)
= T (s - 1)) @S (s (- t)7)
- Z’ioﬁ( m=0 (1]:1) ak‘mbm) (r(a+1) (- to)“) - : ®)

Definition 2.5 ([18]): Let 0 < a < 1, t, be a real number, and £, ((t — t,)%), g ((t — t,)*) be a-fractional
analytic functions defined on an interval containing tos

follt = 1)) = X r(k +1) (- ) =B, % (- ) . )

9a((t = ) = Xiko r(k +1) rearn (&~ 80" = Eio I;j (l"(a+1)( B tO)a) : (10)
The compositions of £, ((t —t,)*) and g, ((t — t,)%) are defined as follows:

(fi © 9)((t = £)®) = fu(Ga((t = t)) = e 2 (ga(t — £)9)™", (11)
and

(Ga @ f)((E = t)®) = ga£ul(t = ) = Tio 2= (£ ((t = £)) ™" (12)

Definition 2.6 ([18]): Suppose that 0 < a < 1, t, is a real number. If £, ((t — t,)%), g,((t — t,)%) are two a-
fractional analytic functions satisfies

(fe ° 9)((t = t)) = (Ga © fI (¢ = t)) = s
Then we say these two fractional analytic functions are inverse to each other.

Theorem 2.7 (product rule for fractional derivatives) ([20]): Let 0 < a < 1,t, be a real number, and let
fo((t = t5)%), g, ((t — t5)*) be a-fractional analytic functions defined on an interval containing t,. Then
(PO fo((t = t)) ® g ((t = t))]
= (eoDE)fu((t = £)M] ® ga((t — )% + fo (£ = t)®) ® (¢, D) [9a (£ — t)D)]. (14)
The followings are some fractional analytic functions.
Definition 2.8 ([20]): Assume that 0 < a < 1, and t is a real variable. The a-fractional exponential function is
defined by

(& —to)". (13)

. _ 12\ 15
Eo(t%) = X~ 01"(ka+1) Zic- 0k‘(l"(0¢+1)t) ' (15)

And the a-fractional logarithmic function Ln, (t%) is the inverse function of the E, (t*). On the other hand, the
a-fractional sine and cosine function are defined as follows:

_1\kr(2k+1)a
Sing (t9) = N, St

N @k DD’ (16)
and
o (_1)kt2ka

€05 (t%) = Xiczo r2ka+1)’
Proposition 2.9 (fractional Euler’s formula)[17]: Let 0 < a < 1, then

E, (it*) = cos, (t%) + isin, (t%). (18)

Remark 2.10: If « = 1, then we obtain the classical Euler’s formula e’ = cost + isint. On the other hand, the
smallest positive real number T, such that E,(iT,) = 1, is called the period of E,, (it%).
Definition 2.11: Let 0 < a <1, and r,t, be real numbers. The r-th power of the a-fractional analytic

function £, ((t — t,)%) is defined by [ £, ((t — t,)®)]®" = E, (ana(fa((t — to)“))). On the other hand, if

9o ((t — t)%) is also an a-fractional analytic function such that £, ((t — t,)*) & g,((t — t,)*) = 1, then we
say that g, ((t — t,)®) is the ® reciprocal of £,((t — t,)%), and is denoted by [£, ((t — t,)*)]®~L.

an

Theorem 2.12 ([20]) : Let 0 < @ < 1, and t, be a real number. Then
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(eoD&) [ sing (¢ = t5)M)] = cos, (¢ — o)), (19)

(eoDE)[ cosa ((t = tg)™)] = —sing (¢ — o)), (20)
Theorem 2.13 (chain rule for fractional derivatives) ([19]): If 0 < a < 1, and let £, ((t — t5)%®), g ((t — t)%)
be a-fractional analytic functions. Then

(oD fal9a((t = to)))] = (e,DE)fa((t = t) (9ot = £6)) ® (¢,DE)gal(t — )] (21)

I1l. RESULTS AND EXAMPLES
First, the arc length definition of fractional differentiable plane curve in the form of parametric equation is
introduced.

Definition 3.1: Suppose that 0 < @ < 1, a is a real number, and x,((t — a)%), y,((t —a)*) are a-fractional
analytic functions defined on an interval containing [a, b]. Let the parametric equation of an a-fractional
Xq = Xa((t — a)%)

differentiable plane curve be {
P Ve = Ya((t = %)

. Then the arc length of this a-fractional differentiable plane

curve is

Sq = ( algl) [[[( aDta)[xa((t — a)“)]]®2 + [( aDg‘)[y“((t - a)(x)]]®2]®(5)l. 22)

Remark 3.2: If a = 1, then Eqg. (22) becomes the traditional arc length formula of differentiable plane curves.
Secondly, the arc length formula of fractional differentiable plane curve in the form of fractional analytical
function is introduced.
Theorem 3.3: Let 0 < @ < 1. If y,((x —a)%®) is an a-fractional analytic function defined on an interval
containing [a, b]. Then the arc length of the a-fractional differentiable plane curve y, = y,((x — a)*) is
1

s = ()| |1+ [ (a2 - a)a)]]m]@(i)l. (23)

— 1 — a
_F(a+1)(x a) it

Yo = Ya(x—a)®)

Proof Since the parametric equation of this a-fractional differentiable plane curve is [ “

follows from Definition 3.1 that its arc length is

®2 @2 ®(3)
sa = (alf) “(abs)[r(;l)(x—a)“]] + [ (D) (x — )] l ‘

= () |[1+ [ (DD - @] Qed

In the following, we introduce the arc length formula of fractional differentiable plane curve in the form of
polar coordinate equation.
Theorem 3.4: Assume that 0 < @ < 1, and if p, = p,((6 — a)*) is an a-fractional analytic function defined
on an interval containing [a, b], and it is the polar coordinate equation of an a-fractional differentiable plane
curve. Then the arc length of this a-fractional differentiable plane curve is

o)
S = (alf) [[[pa((e ~ 91 +[(DF)lpu(@ - ] | l (24)

: %, (0 — a)*) = po (6 — a)¥)® cos, ((6 —a)*)
Proof Since {ya((e — %) = po((8 — DI sing (8 — )%
derivatives that

(D) xe (6 — )]
= [(DE)pe (8 — )9)® coso (0 - ]
= [( uD§) Pa((6 — D] ® 05, (8 — ) — po (8 — D)) Bsin, (6 — )]

= (DE)’[pa((6 — @)®)] ®[cos, (8 — A)N)]®2 + [po((6 — a))]®2[sing (8 — a)*)]®?
—25in, ((6 — A)*) ® 05, (6 — A)*)®pa (6 — A))® (DE)[pa((6 — A)?)] . (25)

]®(%)l'

, it follows from the product rule for fractional

]®2

And o
] 2

(D) e (6 — )]
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= [(D8)1u(® = @)@ sing (8 — )]
= [(2D&)[pa (8 — D)D) ® sing (8 — @)%) + po((6 — A))®c0s, (8 — a)9)]>"
= (D) [Pa((8 — @) ®[sing (6 — )] + [0 (6 — a)*)]®2[cos, (6 — a)*)]®?
+2 - 5in, (0 — )*) ® €05, (0 — D)) ®p, (6 — DI ( DF)[pa((6 — )] . (26)
Therefore,
®2 ®2 5
(D0 = )| + [P0 = D] = [pa((6 = )] + (DF) [ (6 — )] (27)

And hence, by Definition 3.1, the arc length of this a-fractional differentiable plane curve is

sa = (alf) [[( D)@ D]+ (D) Iy - a)“)]]m]@@l

218(3)
= (ulf) [[[pa((e @19 + [(D§) a0~ )9N]” | l (28)

Example 3.5: Suppose that 0 < a < 1. Find the arc length of the a-fractional differentiable plane curve
1

Ty

Vo (x%) = Lna(cosa (x“)) fromx=0tox = (?)E_
Solution By Theorem 3.3 and the chain rule for fractional derivatives, we obtain the arc length of this a-
fractional differentiable plane curve

Sa = ( ol? l)
()"

=<ol“ | [12 + [—tan, Gey1ez1®G)]

[1 * [( on?)[Lna(cosa(xa))]]m]@@)l

=<01a s |[itseceteerier o]

=<01“ 1 |[seca(x)]
&)

= Ln,(sec,(x*) + tarla(xa))]g%l)a
= Ln, (seca (%"‘) + tan, (%"‘)) — Lng(sec,(0) + tan,(0))

[

=ILn, (seca (%"‘) + tan, (%"‘)) . (29)
Example 3.6: Suppose that 0 < « < 1 and p > 0. Find the arc length of the a-fractional cycloid
1 .
Ya(0%) = p(1 = cos,(69)

1
from 6 = 01to 8 = (T,)w.
Solution Using Definition 3.1 yields the arc length of this a-fractional cycloid

®(3)
O T

- < ol l> [[[P(l - COSa(Qa))]m +[p- sina(ga)]®2]®(5)]
(Tu)"‘

=p ( ol 1> |12 — 2c0s,(6%)1%6) |
(T

®2

=20 (o [sine (20°)]
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1
(Te)

=2p-(—=2) - cos, (E 9“)]0

=4p (1 — CoS, G Ta)) : (31)

Example 3.7: If 0 < a < 1, p > 0. Find the arc length of the a-fractional cardioid p,(8%) = p(1 + cos,(69)).
Solution By Theorem 3.4, we obtain the arc length of this a-fractional cardioid is

)

se=2( ol o1+ coss @I+ [( 051+ cosato)]| | |

2

=21 of [[[p(l + cosa(e"‘))]®2 +[-p- Sin“(e(x)]®2]®(5)]

a
1
Ta\a

—2p- 01;; | [12 + 2cos,(691°G)

=4p-| J% 1 [cosaGB“)]

N
= 8p - sin, (% 6“)](7‘1)

= 8p - sin, (%“) 0 (32)

1

IV. CONCLUSION
Based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic

functions, three types of arc length formulas of fractional differentiable plane curves can be obtained. The major
methods used in this paper are the product rule and the chain rule for fractional derivatives. In fact, the new
multiplication is a natural operation of fractional analytic functions, and these formulas are generalizations of
classical arc length formulas of differentiable plane curves. The new multiplication concept of fractional
analytic functions plays an important role in this paper. In the future, we will use the new multiplication to
expand the research fields to engineering mathematics and fractional differential equations.
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