
Research Inventy: International Journal of Engineering And Science

Vol.10, Issue 9 (September 2020), PP 06-17

Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com

6

The Permutation Flowshop Scheduling Problem: An Efficient

Genetic Algorithm

José Lassance C. Silva
1
, Gerardo Valdisio R. Viana

2
, Bruno Castro H. Silva

3

1
 Federal University of Ceará, Fortaleza-Ceará, Brazil

2
State University of Ceará, Fortaleza-Ceará, Brazi

3
 Federal University of Ceará, Campus Crateús, Crateús-Ceará, Brazil

Corresponding Author: lassance@lia.ufc.br

Abstract: This paper proposes a Genetic Algorithm (GA) to solve the permutation flowshop scheduling

problem with the makespan criterion. The problem has important applications in industrial systems. The main

contribution of this study is due to the fact that new genetic operators were used such as mutation operator

which intensifies the search to find good solutions and a new intensification criteria to escape from local

minima. In addition, The GA is not hybridized as does most of the resolution methods used recently to solve the

problem. The GA took into account the diversification and intensification of the search to solve the problem.

Computational experiments are reported for the literature instances and the obtained results are compared with

other techniques.

Keywords: Combinatorial Optimization, Evolutionary Computation, Metaheuristic, Heuristic, Sscheduling.

--- ----------

Date of Submission: 04-09-2020 Date of Acceptance: 19-09-2020

-- ---------------

I. INTRODUCTION
Flowshop scheduling problems focus on processing a given set of jobs, where all jobs have to be

processed in an identical order on a given number of machines. Among all types of scheduling problems,

flowshop scheduling has important applications in different industries. The objective of the permutation

flowshop scheduling problem (PFSP) is to find a job sequence to minimize the makespan or the total flow time

(TFT). References [1-5] show a statistical review of flowshop scheduling research, in the last decades. In this

paper, we worked the PFSP with the makespan criterion, where it was extensively addressed in the literature [6-

8]. Ceberio et al. [9] contains the state-of-the-art for the PFSP with respect to the TFT criterion.

The PFSP input is given by a matrix P with m x n non-negative elements, where Pik is associated with

job Jk processing time in the machine Mi. Following the four parameters A/B/C/D [1] notation, the problem is

classified as n/m/P/Fmax. The problem is F/prmu/Cmax within [3], suggested a classification //. The PFSP is

also known to be NP-Complete in the strong sense for m 3 [2]. However, for m = 2 it can be exactly solved in

polynomial time. There is an extensive literature survey – in past decades – to the problem and the authors

indicate the existence of more than 1,200 Operations Research papers on it, also containing a large diversity of

aspects and applications, references [4-5].

The Permutation Flowshop Scheduling Problem is defined as given a set of n jobs, J1, J2, , Jn, to be

processed by m machines M1, M2, ..., Mm. Each job demands m operations and every job has to obey the same

operation flow, i.e. job Jk for k =1,2,..., n is processed first in machine M1, then in machine M2 and so forth up to

Mm. If job Jk does not use all the machines its processing flow continues to be the same but with time zero

whenever that happens. A machine processes just a single job and once it is started it cannot be interrupted up to

its completion. It is worth of mentioning that the total search space of possible sequences to be considered is

very large and it is bounded by above by O(n!). A solution to the problem consists in processing all the n jobs in

the least possible time. Suppose that the permutation ={1, 2, …, n} represents the schedule of jobs to be

processed. The finishing time of every operation can be calculated from the following expression:

.

1

111

1

11

 ..., 2,3, and ..., 2,3, where

);,()},(),,1(max{),(

);,(),1(),(

);,1(),1(),1(

);,1(),1(

njmi

iPicicic

iPicic

Pcc

Pc

jjjj

jjj

 (1)

Then the makespan of permutation can be defined as

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

7

),()(max nmcC (2)

The permutation flowshop scheduling problem with the makespan criterion is to find a permutation
*
 in the set

of all permutations such that Cmax(
*
) Cmax(), .

In the practice, the exact solution methods for the problem are still limited to small instances, n 20

and even to them the running time continues to be large. The heuristics are the primary way to solve the

problem. Simple heuristic strategies may be based on applying priority based dispatching rules. More effective

heuristics represent specific algorithms which are developed for some special type of problem. This problem

might be partly solved by applying metaheuristics, which are widely generic with respect to the type of problem.

In past decades, most research focused on developing heuristic and metaheuristics algorithms. These solution

techniques can be broadly classified into two groups referred as constructive heuristics and improvement

method (metaheuristics). In the first group, heuristics have been developed for the makespan criterion by Palmer

[10], Campbel et al. [11], Newaz, Enscore, and Ham (NEH) [12], Ruiz and Maroto [13], among others. These

algorithms can obtain the near-optimum solutions in a short period, but the qualities of solutions are not

satisfactory. NEH is one of most effective constructive heuristic algorithms, which first assigned priorities on

each job based on the total processing time and then inserted jobs successively into the sequence to obtain a

complete scheduling. The second group has grown quickly with the advance of modern computers. Since 1995,

many metaheuristics have been developed and appropriate for solving the problem, among which we highlight

those that had the best performance: genetic algorithm of Chen et al. (GAC) [14], of Reeves (GARe) [15], of

Murata et al. (GAM) [16], of Ruiz et al. (GARu) [17], hybrid differential evolution algorithm (HDE) [18],

estimation of distribution algorithm (EDA) [19], discrete differential evolution algorithm (DDE) [20], hybrid

differential evolution algorithm of Liu et al. (LHDE) [21], and self-guided differential evolution with

neighborhood search (SGDE) [8]. These metaheuristics also had better performance than the heuristics of the

first group.

GAC (1995), GARe (1995), GAM (1996), and GARu (2006) are traditional genetic algorithms, each

characterized by their genetic operators (population initialization, crossover, mutation, selection strategy, and

stopping criteria). GARu had the best performance among them when applied in the Taillard’s problems [22].

Qian et al. (2008) [18] proposed HDE algorithm which employed a largest-order-value rule to convert the

continuous value to job permutations and used a problem-dependent local search to enhance exploitation. The

convergence property of the HDE was analyzed based on Markov chains. Jarboui et al. (2009) [19] presented an

EDA with a probabilistic model to determine the probability of the jobs to be in determined positions. Pan et al.

(2007) [20] combined the optimization mechanism of the differential evolution algorithm with the feature of the

PFSP, and proposed DDE algorithm which introduced mutation and crossover operators based on permutations.

Liu et al. (2014) [21] proposed a hybrid differential evolution named LHDE which combines the differential

evolution with the individual improving scheme and greedy-based local search. Shao and Pi (2016) [8]

presented a series of studies and proposed SGDE algorithm which combines differential evolution with a self-

guided mechanisms and some local searching strategy. They used two neighborhood searches based on the

variable neighborhood search (VNS) are designed to enhance the local searching ability, which includes

Insert_VNS and Swap_VNS. Their computational results showed to be superior to several of the best heuristics

and metaheuristics reported in the literature, in terms of quality of the search, robustness and efficiency. Their

computational experiments confirmed that the SGDE algorithm was more effective than all other algorithms.

SGDE is by far the best metaheuristic algorithm for solving the PFSP, with makespan criterion.

The PFSP has been extensively studied over the last decades, it is still a challenge to find optimal

solutions to large instances of the problem in a reasonable amount of time. This paper presents a different

genetic algorithm (DGA) without the use of the following strategies: (i) initialization effectively followed by (ii)

a hybridization step with a search technique known. These strategies are common features of the genetic

algorithms used for solving the PFSP. The computational results show that the DGA algorithm generated better

results than those metaheuristics reported previously. All computational results were based on the same

benchmark instances taken from Reeves [15] and Taillard [22] with the makespan criterion. The DGA algorithm

decreases by 51% the average deviation of the SGDE algorithm in the 21 instances of Reeves.

The remaining contents of this paper are organized as follows. Section 2 gives the details of the

proposed DGA algorithm and design of experiments for parameter setting. The computational results over

benchmark problems are discussed in Section 3. Finally, Section 4 summarizes the concluding remarks.

II. THE GENETIC ALGORITHM
The first step in applying genetic Algorithm (GA) to a particular problem is to convert the feasible

solutions of that problem into a string type structure called chromosome. In order to find the optimal solution of

a problem, a standard GA starts from a set of assumed or randomly generated solutions (chromosomes) called

initial population and evolves different but better sets of solution (chromosomes) over a sequence of generations

(iterations). In each generation the objective function (fitness measuring criterion) determines the suitability of

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

8

each chromosome and, based on these values, some of them are selected for reproduction. For the no-wait

flowshop scheduling problem we take the fitness value of each chromosome to be the reciprocal of the

makespan, using (2). The number of copies reproduced by an individual parent is expected to be directly

proportional to its fitness value, thereby embodying the natural selection procedure, to some extent. The

procedure thus selects better (highly fitted) chromosomes and the worse can be eliminated. Genetic operators

such as crossover and mutation are applied to these (reproduced) chromosomes and new chromosomes

(offspring) are generated. These new chromosomes constitute the next generation. These iterations continue still

some termination criterion is satisfied. The best chromosome evaluated is presented as the optimal solution of

the problem. A good reference for understanding how GA work is Goldberg [18].

Two principles were used to guide the construction of DGA: diversification and intensification.

Michell [24] described the evolution of the solutions depends of the variation in the abilities of the individuals in

the population (i.e. diversification of solutions). Already intensification in the search process tends to improve

the quality of the final solutions, in [25]-[26]. Three different procedures were developed for the DGA based on

these two principles. The first procedure allows regenerate individual with worse fitness through mutation

operator. The second procedure is the creation of a new type of crossover operator. Finally, the third procedure

allows modifying the population to concentrate the search in new regions. The components of the DGA are

given below.

Figure 1. Solutions obtained of s3=<3 4 5 2 1>.

2.1 Solution Representation

The chromosome (an individual of the population) is defined as a permutation of the n jobs. The

representation used for a solution of the problem is a permutation of the set J ={J1, J2, ..., Jn}, where the relative

order (from left to the right) of the jobs indicates the processing order of the jobs on the machines.

2.2 Population Initialization

The generation of the initial population is the main criterion to deal with the diversification. If the

initial population is not well diversified, a premature convergence can occur for GA. A set of Npop initial

individuals or chromosomes form an initial population, where NPop represents the population size. The DGA

has an initial population generated by the PopInic procedure. The NPop best solutions of this procedure are

inserted in the initial population in ascending order (makespan). Thus, the best individuals in the population are

I1, I2, ..., INPop, in this order. The PopInic procedure produces n×n feasible solutions to the problem, where

NPop<n
2
. It is equivalent to nearest neighbor heuristic fairly applied to the Traveling Salesman Problem, where

if the best neighbor of job j is the job k, then processing the job k immediately after the job j, leaves the lower

idle in the last machine (Mm). Initially, PopInic produces n distinct solutions (s1, s2, ..., sn), where each solution

is created taking into consideration this criterion, and begin by job k=1, 2, …, n. After this, (n-1) solutions are

generated from each solution sk as follow: sk
1
=< sk2, sk3, sk4, …, skn, sk1>, sk

2
=< sk3, sk4, …, skn, sk1, sk2>, …, sk

n-1

=< skn, sk1, sk2, …, skn-1>. For example, if n=5 e s3=<3 4 5 1 2>, the four solutions are <4 5 1 2 3>, <5 1 2 3 4>,

<1 2 3 4 5>, e <2 3 4 5 1>. Fig. 1 shows how the four solutions were obtained.

2.3 The Fitness Function

The individuals are all evaluated by using (2).

2.4 Selection Strategy

The selection strategy for crossover and mutation is made with all individuals of the population.

2.5 Crossover and Mutation

Crossover is a genetic operation to generate a new sequence (i.e., child) from its parent strings. It has a

great influence on the performance of genetic algorithm. The crossover operator exchanges the information of

the selected parents to generate promising offspring or sequences. It can be used to generate a set of new

solutions or offspring between two solutions from the set. The idea behind crossover is that the new

chromosome may be better than both of the parents if it takes the best characteristics from each of the parents.

The crossover operator is applied to all individuals in the population, making (NPop × (NPop-1))/2 applications

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

9

for each type of crossover operator. Four crossover operators were used in DGA: order crossover with one-point

(1P), order crossover with two-point (2P), partially mapped crossover (PM), and order crossover with two

blocks (2B). The operators 1P, 2P and PM are widely used in evolutionary computation and can be found in

[15], [23] and [27]. We developed the 2B operator. The two cutting points c1 and c2 used in 2P, PM and 2B are

given as c1=n/3+1 and c2=2×n/3 + 1. The cutting point c1 used in 1P is given as c1=n/2. We did not use the

random generation of these points for the algorithm proposed because we want to split the chromosome in

approximately three equal parts when we used 2P, PM and 2B, and in approximately two equal parts, when used

1P.

Figure 2. The 2B Crossover operator.

We developed the 2B operator on the idea of replicating the good built blocks. In addition, it increases

the number of solutions generated and evaluated by DGA, diversifying the search to find the optimal solution of

the problem. The Fig. 2 illustrates this procedure, where each parent D1 and D2 is divided into three blocks. The

cutting points that generate the blocks are c1 and c2, specified above. Taking D1 as the base, the blocks b1, b2 and

b3 generate four offspring (children): F1=<b1 b2>, F2= <b1 b3>, F3= <b2 b1>, and F4= <b3 b1>. The block b1 is the

part between the two cutting points (central block D1 – gray color). The block b2 is formed by elements that are

not in b1 and they are placed in the order of their appearance in D2. The block b3 consists of the elements of

block b2, with their order reversed. The same procedure is repeated for D2 being the base, generating more four

children. The traditional genetic algorithms generally use the insertion or swapping operators as the mutation

operator. In this work, a new mutation operator is proposed in order to intensify the search, regenerating the

solutions considered worse quality. The purpose of this operator is to build good solutions from a particular

solution combined with the best solution found up to that moment of the search. The mutation operator used in

the DGA works as follows.

Figure 3. Application of the mutation operator.

Fig. 3. shows an application of the mutation operator with n=8, k=2, sopt=<3 5 8 6 1 7 2 4> (solution

defined as the regeneration solution), and s=<7 3 1 5 2 6 8 4> (a solution of the current population to be

regenerated), it produces the solution sr=<7 2 4 3 5 8 1 6> (solution regenerated by the application of the

mutation operator). Initially, k adjacent positions of the regeneration solution are copied for the solution

regenerated. Thereafter, the copies can be alternate positions of the regeneration solution, if certain jobs of k

adjacent positions have already been copied to the solution regenerated. Furthermore, the copy can also be made

with v positions of the regeneration solution (v˂k). This happens when the number of jobs, from a certain

position of the regeneration solution, yet not copied from the regeneration solution is less than k. In the example,

the regenerate solution was obtained as follows. Let s1 be the first job of the solution s (s1=7). Insert s1 into first

position of solution sr (sr = <7>). Find the position j of job s1 in solution sopt (j=6). Let r=(rj+1, rj+2, ..., rj+k) be a

partial sequence of sopt with k adjacent positions, after position j (r=(2, 4)). Insert r into sr (sr=<7 2 4>). This

process is repeated for other jobs of the solution s, checking which of them are not in sr. Thus, the next

iterations show the following results {s2=3, j=1, r=(5, 8), sr=<7 2 4 3 5 8>}, {s3=1, j=5, r=(), sr=<7 2 4 3 5 8

1>}, {s6=6, j=4, r=(), sr=<7 2 4 3 5 8 1 6>}. Another important feature of this technique is that the regeneration

solution can be updated whenever a better solution is found. After several tests, the DGA is running with k=1, 2,

..., n/2. The Fig. 4 shows the algorithm of the mutation operator.

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

10

2.6 Replacement Strategy

The replacement strategy is responsible for controlling the replacement of individuals from one

generation to the next in the population. The size of the population is constant (NPop). The proposed strategy

for our AG is fully replacing all individuals of the population by the best individuals found in the application of

the crossover and mutation operators. Acting this way, the DGA intends to diversify and intensify further the

search to find the optimal solution of the problem.

Figure 4. The mutation operator.

2.7 Stopping Criteria

Many stopping criteria based on the evolution of a population may be used. Some of them use the

following conditions to determine when to stop: generations (when the number of generations reaches the value

of generations), time limit (after running for an amount of time in seconds equal to time limit), fitness limit

(when the value of the fitness function for the best point in the current population is less than or equal to fitness

limit), stall generations (when the average relative change in the fitness function value over stall generations is

less than function tolerance), function tolerance (The algorithm runs until the average relative change in the

fitness function value over stall generations is less than function tolerance), among other conditions. The

algorithm stops when any one of these conditions is met.

Initially, the DGA used the following criteria: generations, time limit and stall generations. Several

analyzes were performed with the execution of the algorithm applied to different instances of the problem,

where it was observed that the algorithm never stopped for the values of the first two variables (generations=n)

and (time limit=7200 seconds, when n<100). The average value of the makespan (fitness) of individuals of the

current population was used for the third variable. It was compared with the average value of the immediately

preceding population. When these values are equal to at least 2 consecutive iterations or time limit>7200, the

algorithm stops and presents the best solution found to the problem. This feature prevents the evaluation of

solutions that can be distinct from those already generated and analyzed, but with the same performance. This

greatly reduced the algorithm runtime. With these three criteria, the DGA was converging very fast, mainly for

problems with n<100, and failing to appreciate other regions of the search space, compromising the process of

diversification. Thus, we decided to adopt a radical change in the individuals of the last population and restart

the search, applying the steps of the genetic algorithm again. The individuals obtained in the last population may

not be a good enough solutions, since there can be better solutions in the neighborhood of each individual.

Therefore, a local search method was adopted to further improve the current solutions.

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

11

In particular, two local search methods were applied to find more promising solutions in the solution

space through changing neighborhood structures during the search process. A neighborhood is usually defined

based on moves of jobs, the search process can benefit much from suitably selected moves. Among various

types of moves considered in the literature, insert and swap moves are most commonly used for the PFSP. The

neighborhood based on insert moves is defined by enumerating all possible pairs of positions i, j ∈ {1, …, n} in

sequence s (i≠j), where job si is removed and then reinserted at position j of s. The neighborhood based on swap

moves is defined analogously, which considers exchanging the positions of the two jobs i e j in the sequence. In

this work, we modified these two moves to k consecutive jobs (1≤ k ≤ n/2). The k-insert moves considers

removing k consecutive jobs from positions i, i+1, …, i+k-1 (i=1, …, n+1-2k) and re-inserting them together

into positions j, j+1, …, j+k-1 (j=1, …, n+1-k) in the same order.

The k-swap moves is defined in a similar manner, which considers exchanging the positions of k

consecutive jobs in the sequence. The makespan of each new individual is performed and compared to the best

makespan found and individuals of the population I, i.e., after the formation of the new solution, the evaluation

is made using (2) and comparing your fitness with the fitness of the individual of population I, being able to

former a new population. Other significant change was made in the insert and swap moves, when one of the

moves finds a better solution than current optimal solution, then this solution becomes the new solution s. The

variables dij, e1 and e2 were used in k-insert moves algorithm to prevent the generation e evaluation of repeated

solutions. The procedures of the two moves are described in the Fig. 5.a and 5.b.

Figure 5. Pseudocode of the k-swap (a) and k-insert (b) moves.

The Fig. 6 illustrates the pseudocode of our genetic algorithm. The best solution (s_opt) is evaluated

within the initial population, crossover, mutation and local search procedures. The crossover and mutation

population is allocated to array ICM. The makespan of the individual v is stored in its first component (Iv0 and

ICMv0). The components of avg1 and avg2 contain the average makespan of the populations I and ICM. These

values are calculated for individuals of the current population and immediately preceding population. Likewise,

the components of avgP store these values for the populations used in the local search method. The DGA

algorithm was designed to run in four different ways based on local search methods: k-insert (GAI), k-swap

(GAS), k-swap with k-insert in this order (GASI), and k-insert with k-swap (GAIS). The crossover operator 2P

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

12

only starts when the crossover operator 1P is finalized for all individuals of the population I. Likewise, 2P, PM,

and 2B. For each instance, the GAI, GAS, GASI, and GAIS algorithms were evaluated only once, and the best

result was attributed to the DGA. The CPU time of DGA is equal to the average time of GAI, GAS, GASI, and

GAIS algorithms. Thus, we use the same rules as the non-deterministic algorithms practice.

Figure 6. Pseudocode of the DGA algorithm.

2.8 Calibration of the proposed DGA

We conducted a study with simple experiments to determine an appropriate Npop value and select the

best crossover operator (1P, 2P, PM and/or 2B). We used the test set of instances with n {20, 30, 50, 75} e m

 {5, 10, 15, 20}. They are 21 benchmark instances provide by Reeves [15]. For the makespan criterion, the

solution quality was evaluated according to the makespan generated from Shao and Pi [8]. One run were carried

out for each problem instance to report the performance based on the percentage relative deviations (d),

computed as d=100*(z – r)/r, where z is the makespan generated by DGA and r is the optimal solution describe

from Shao and Pi [8]. In these tests, the DGA did not use the local search methods. In this moment, the results

of the experiments conducted in instances of PFSP were to determine these two parameters specifically.

The Fig. 7 shows the performance of DGA with NPop {30, 40, ..., 200}. It is possible to see that the

best result was obtained for NPop=200, with d= 2.41. The performance of the algorithm was weak to NPop

values between 30 and 110, with percentage relative deviation greater than 3.0%, and to NPop values between

120 and 200, the percentage relative deviation was greater than 2.41% and less than 3.00%. Therefore, we

proposed DGA with 200 individuals in the population.

The Table 1 shows the result of DGA when the object of analysis is to determine what type of

crossover should be used, alone or combined. It presents in its columns: the instance of the problem; values for

m and n; deviations (d) of each crossover operator for each instance; the average, minimum and maximum

deviations for each operator; and the number of problems (BP) that the operator has better performance. The

bold values indicate the best results at each line.

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

13

Figure 7. Performance of DGA with 30≤NPop≤200.

Table 1 – Performance of the Crossover Operators.

Instance n x m 1P (%) 2P (%) PM (%) 2B (%)

rec01 20x5 3.85 0.16 0.16 0.16

rec03 20x5 0.72 0.18 1.17 0.45

rec05 20x5 0.24 0.24 2.17 1.45

rec07 20x10 1.15 2.11 1.15 2.30

rec09 20x10 2.41 2.41 0.98 1.43

rec11 20x10 2.66 0.00 3.14 1.54

rec13 20x15 0.78 1.09 1.45 2.18

rec15 20x15 2.31 0.72 1.03 2.46

rec17 20x15 1.95 1.68 6.62 3.42

rec19 30x10 4.83 2.96 2.10 6.16

rec21 30x10 5.16 3.22 4.26 3.67

rec23 30x10 2.39 2.88 3.53 6.96

rec25 30x15 8.79 3.54 5.01 6.53

rec27 30x15 4.00 3.08 2.70 5.77

rec29 30x15 9.31 4.33 8.92 9.14

rec31 50x10 5.48 4.47 9.43 8.24

rec33 50x10 4.01 3.21 3.79 5.52

rec35 50x10 3.51 3.48 3.23 3.27

rec37 75x20 10.32 8.24 9.74 10.75

rec39 75x20 10.42 8.32 7.73 8.39

rec41 75x20 12.10 8.85 12.76 12.40

Average 4.59 3.10 4.34 4.87

Minimum 0.24 0.00 0.16 0.16

Maximu

m

 12.10 8.85 12.76 12.40

BP 4 13 7 1

Fig. 8 shows the graphs for the deviation (%) and execution time (seconds) of each operator. It is

possible to note the good performance of 2P and PM operators. These two operators obtained the best

performers with an average deviation of 3.10% (2P) and 4.34% (PM). The 2P operator had the best performance

in 13 of the 21 instances tested. The 2P operator had the best deviation range, with the best minimum (0.00%)

and best maximum (8.85%). The 2P and 2B operators had the lowest runtimes. These two operators are good to

diversify the search, given that they do not compromise the runtime. For these reasons, we decided to adopt the

four crossover operators 1P, 2P, PM and 2B, in this order of execution, as the crossover operators of the DGA.

Other combinations of these four operators were tested and none of them was better than this.

The mutation operator had performance better than other genetic operators in the following instances:

rec15, rec27, rec31, and rec35 (DGA with 1P); rec35 (DGA with 2P); rec13, rec15, rec27, rec29, rec31, rec35

and rec39 (DGA with PM); rec15, rec17, rec19, rec21, rec23, rec25, rec27, rec29, rec33, rec35, rec37, rec39,

and rec41 (DGA with 2B). The mutation and crossover operators have achieved the same results in other

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

14

instances.

Figure 8. Behavior of the crossover operators.

III. COMPUTATIONAL EXPERIMENTS

The computational experiments carried out to observe the performance of DGA was executed in a PC

Dell with a clock of 3.0 GHz and 4 Gbytes of RAM and the source program is in ANSI C. Table 2 presents the

average deviation of the algorithms GAI, GAS, GASI, GAIS, DGA, HDE, LHDE, DDE, and SGDE, in the 21

problem instances of Reeves [15]. The average deviation (d) is the same as given in Section II (item 2.8). A

description of the algorithms HDE, LHDE, DDE, and SGDE was given in the fifth paragraph of Section I,

remembering that SGDE algorithm is considered the best metaheuristic applied in solving the PFSP. The bold

values indicate the best results at each line. Table 3 presents CPU time of GAI, GAS, GASI, GAIS, and DGA.

All algorithms were run on different machines, except GAI, GAS, GASI, GAIS and DGA.

Table 2 – Comparison of algorithms with respect to instances of Reeves.

Inst. HDE LHDE DDE SGDE GAI GAS GASI GAIS DGA

rec01 0.16 0.00 0.16 0.00 0.00 0.16 0.00 0.00 0.00

rec03 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00

rec05 0.24 0.24 0.24 0.24 0.24 0.24 0.00 0.24 0.00

rec07 0.00 0.00 0.00 0.00 0.00 1.15 1.15 0.00 0.00

rec09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rec11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rec13 0.10 0.00 0.00 0.00 0.26 0.26 0.10 0.16 0.10

rec15 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.00

rec17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rec19 0.86 0.57 0.29 0.29 0.81 0.29 0.29 0.29 0.29

rec21 1.44 1.44 1.44 1.44 1.39 1.44 1.44 1.44 1.39

rec23 0.50 0.50 0.55 0.50 0.70 0.15 0.15 0.45 0.15

rec25 1.15 0.96 0.80 0.68 0.36 1.15 0.24 0.48 0.24

rec27 1.10 0.84 1.10 0.80 0.97 1.10 0.80 0.97 0.80

rec29 1.09 0.57 1.36 0.57 0.13 1.14 0.35 1.44 0.13

rec31 2.59 1.94 1.35 1.25 0.26 0.69 0.26 0.26 0.26

rec33 0.83 0.83 0.83 0.45 0.51 0.96 0.00 0.83 0.00

rec35 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00

rec37 4.48 3.43 3.27 2.89 2.36 2.81 1.72 1.51 1.51

rec39 3.11 2.83 1.65 1.69 1.00 1.95 1.45 0.71 0.71

rec41 4.33 3.43 3.15 2.84 1.88 2.44 1.73 1.09 1.09

Avg 1.047 0.837 0.773 0.650 0.518 0.798 0.461 0.470 0.318

Min. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max. 4.48 3.43 3.27 2.89 2.36 2.81 1.73 1.51 1.51

Effic. 7 9 7 9 8 3 9 8 10

The Fig. 9.a and Tables 2 and 3 give some observations about the computational experiments:

a) All algorithms had the lowest minimum value (0.00%). The DGA had the best maximum value

(1.51%) and the best performance (Average = 0.318%). DGA had Efficient = 10, i.e., they found the optimal

solution in 10 of the 21 problem instances;

b) The DGA obtained 20 (95.2%) satisfactory results whereas the SGDE had 11 (52.4%) satisfactory

results, of 21 instances used. Also in this aspect, GASI and GAIS were more efficient than SGDE, with 14

(66.7%) and 13 (61.9%), respectively. GAI obtained 11 (52.4%) satisfactory results. In the average deviation,

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

15

DGA, GASI, GAIS, and GAI were better than SGDE, DDE, LHDE, HDE, and GAS. SGDE had one better

results than DGA in the instances rec13 whereas DGA was better than SGDE in all other instances;

c) The HDE and LHDE had the worst results, with Avg=1.047% and Avg=0.837%, respectively. They

also had the worst results with the maximum value, i.e., their solutions have a greater range (HDE with [0.0,

4.48] and LHDE with [0.0, 3.43]) than the other algorithms for the average deviation values;

d) The DGA, GASI, and GAIS were much better than the other algorithms;

e) The average running time of GAI, GAS, GASI, GAIS and DGA was between 355.1 and 1071.3

seconds;

f) The DGA performance was better than all algorithms, as shown in Fig. 9.a, where a 95% Confidence

Interval plot (CI) for the d value under different algorithms is provided.

Figure 9. CI – for instances of Reeves (a) and Taillard (b).

Table 3 – Comparison of algorithms with respect to CPU time.

Instance GAI GAS GASI GAIS DGA

rec01 6.3 5.8 6.0 6.0 6.0
rec03 6.8 6.1 6.6 6.0 6.4

rec05 10.1 5.5 5.7 6.6 6.9
rec07 17.6 12.6 8.7 16.4 13.8

rec09 12.0 12.1 13.5 14.5 13.0
rec11 20.6 16.7 21.3 18.7 19.3

rec13 25.1 25.1 33.5 25.0 27.2

rec15 31.7 39.9 29.7 28.4 32.4
rec17 25.2 31.5 22.6 27.8 26.8

rec19 35.4 46.7 77.8 77.0 59.2
rec21 33.6 20.4 34.6 44.3 33.2

rec23 65.4 53.4 40.3 61.3 55.1

rec25 136.3 85.9 141.3 117.3 120.2
rec27 99.0 63.3 79.6 105.0 86.7

rec29 101.6 77.3 96.1 51.4 81.6
rec31 402.4 227.8 307.3 426.5 341.0

rec33 161.9 49.8 217.5 191.2 155.1
rec35 78.4 47.3 112.8 114.1 88.2

rec37 3459.5 2993.5 3745.7 6576.0 4193.7

rec39 3976.3 1426.4 2625.2 7372.0 3850.0
rec41 5083.4 2210.9 4537.5 7211.1 4760.7

Average 656.6 355.1 579.2 1071.3 665.5

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

16

The instances from the Reeves benchmark set are of relatively small scale and to further demonstrate

the good efficiency of the our algorithms, numerical comparisons were conducted on the Taillard benchmark set

[17], which contains a good number of large-scale instances formed by 90 problem instances, divided in 9

classes (n×m): C1 (20×5); C2 (20×10); C3 (20×20); C4 (50×5); C5 (50×10); C6 (50×20); C7 (100×5); C8

(100×10); C9 (100×20). Each class contains 10 problems. We compared the results of GAI, GAS, GASI, GAIS,

and DGA with GAM, GARe, GARu, and SGDE. A description of the algorithms GAM, GARe, GARu, and

SGDE was given in the fifth paragraph of Section I. Reeves [15], Murata et al. [16], and Ruiz et al. [17] did not

describe the individual solutions found by GARe, GAM, and GARu algorithms, respectively. They presented

the results by class. Thus, we could not compare them with the individual solutions found by SGDE, GAI, GAS,

GASI, GAIS, and DGA algorithms. The Table IV and Fig. 11 show the computational results for the 9

algorithms, whereas the Table V presents the CPU time of GAI, GAS, GASI, GAIS, and DGA algorithms in

these instances.

Table 4 – Comparison of algorithms with respect to Taillard’s Instances.

Class GAM GARe GARu SGDE GAI GAS GASI GAIS DGA

C1 0.53 0.62 0.25 0.00 0.10 0.53 0.10 0.10 0.10

C2 1.61 1.71 0.64 0.08 0.20 0.50 0.07 0.08 0.00

C3 1.36 1.31 0.40 0.07 0.07 0.28 0.09 0.07 0.05

C4 0.23 0.16 0.06 0.03 0.25 0.46 0.34 0.22 0.15

C5 3.27 2.00 1.46 1.32 1.08 1.94 1.28 1.07 0.83

C6 4.75 3.58 2.47 3.91 2.94 4.07 2.76 2.74 2.57

C7 0.22 0.11 0.06 0.21 0.33 0.59 0.44 0.31 0.31

C8 1.34 0.67 0.52 0.58 0.76 1.30 0.76 0.61 0.53

C9 4.68 3.12 2.54 3.01 2.75 3.37 2.62 2.84 2.47

Avg 1.999 1.476 0.933 1.025 0.942 1.449 0.941 0.893 0.778

Min.

0.00 0.00 0.00 0.00 0.00 0.00

Max.

4.79 4.33 6.42 4.22 4.21 4.03

Effic.

26 20 12 25 27 32

Table 5 – The CPU time with respect to Taillard’s Instances.

Class GAI GAS GASI GAIS DGA

C1 9.0 10.7 10.0 10.1 9.9

C2 27.0 23.8 27.1 28.3 26.5

C3 49.7 41.6 49.9 50.1 47.9

C4 49.5 32.9 74.1 69.9 56.6

C5 229.9 169.4 266.9 263.9 232.5

C6 902.9 658.5 1197.3 1132.5 972.8

C7 548.2 281.2 810.4 806.6 611.6

C8 1679.3 916.4 2124.3 2555.1 1818.8

C9 7281.1 5805.8 7467.3 7486.5 7010.2

Average 1197.4 882.3 1336.4 1378.1 1198.5

The Fig. 9.b and Tables 4 and 5 give some observations about the computational experiments:

a) The SGDE, GAI, GAS, GASI, GAIS, and DGA algorithms had the lowest minimum value (0.00%). The

DGA had the best maximum value (4.03%), the best performance (Average = 0.778%), and best Efficient

(32). The DGA found the optimal solution in 32 of the 90 problem instances;

b) The DGA obtained 4 (44.0%) satisfactory results whereas the GARu and SGDE had 3 (33.3%) and 2

(22.2%), respectively. In the average deviation, DGA and GAIS were better than the others algorithms.

GARu had three better results in the classes C6, C7, and C8, whereas DGA had four better results in the

classes C2, C3, C5, and C9. SGDE had two better results in the classes C1and C4;

c) The GAM (avg=1.99%), GARe (avg=1.47%) and GAS (avg=1.44%) had the worst results. GAS and SGDE

had the worst results with the maximum value, i.e., their solutions have a greater range (GAS with [0.0,

6.42] and SGDE with [0.0, 4.79]) than GAI, GASI, GAS, and DGA algorithms for the average deviation

values;

d) The average running time of GAI (1197.4), GAS (882.3), GASI (1336.4), GAIS (1378.1), and DGA

(1198.5) was less than 23 minutes. The CPU time of the algorithms was less than 51 seconds in the classes

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

17

C1 to C3, between 170 and 1198 seconds in the classes C4 to C6, and between 282 and 7487 seconds in the

classes C7 to C9, these times were quit significant;

e) The DGA performance was better than all algorithms, as shown in Fig. 9.b. We consider very efficient DGA

algorithm, because the deviation of the 58 instances which it did not find the optimal solution was less than

or equal to 1.00% for 33 instances; between 1.01% and 2.00% for 11 instances; between 2.01% and 3.00%

for 10 instances; and between 3.01% and 4.03% for 4 instances.

IV. CONCLUSION

In this paper, a genetic algorithm (DGA) is proposed and applied to the permutation flowshop

scheduling problem with the makespan criterion. The genetic algorithm has been widely used in a wide range of

applications. The DGA employs a permutation representation and uses the new procedure as the mutation

operator. This procedure can regenerate some solutions of low quality. This technique had the good performance

to improve the quality of solutions. It is presented here as one scientific contribution. In addition, a new

crossover operator (2B) and radical changes in the individuals of the population (to restart the search) have been

proposed to DGA.

The computational experiments from the standard benchmarks of the area show that the DGA

algorithm is an enough competitive metaheuristic if compared to other metaheuristic. The DGA algorithm has

obtained better results than SGDE and GARu (considered the best algorithms applied to the specific problem).

The DGA is not hybridized, whereas the other algorithms are hybridized.

The DGA algorithm was applied successfully to the PFSP and it seems reasonable to suppose, at least

in a first moment, that it can solve other permutation combinatorial optimization problems. This hypothesis,

however, needs further studies on them. An attempt to improve the CPU time of DGA algorithm would be the

use of parallel or distributed processing, since it seems that the running time still lies within practical acceptable

intervals.

Our next job will be to use the best solution from the DGA algorithm and apply it to the TG algorithm,

in [28], as an initial solution. Thus, TG accelerates the tree search to determine the optimal solution for the

specific problem. In addition, we will also use the SH algorithm, in [29], to populate the initial DGA population

and speed up the search for the optimal solution. The DGA was successfully applied to the No-Wait Flowshop

Scheduling Problem, cf. [30]. This fact was also verified here when applied to the PFSP.

Acknowledgment
The authors thank the Federal University of Ceará (UFC), the State University of Ceará (UECE) and Cearense

Foundation of Research Support (FUNCAP).

References
[1] R. W. Conway, W. L. Maxwell, and L. W. Miller, "Theory of scheduling," Addison-Wesley, Reading, Mass., 1967.

[2] M.R. Garey, D.S. Johnson, and R. Sethi, "The complexity of flowshop and jobshop scheduling," Mathematics of Operations
Research, vol. 1(2), pp. 117–29, 1976.

[3] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan, "Optimization and approximation in deterministic sequencing and

scheduling: a survey", Annals of Discrete Mathematics, vol. 5, pp. 287–326, 1979.
[4] A. Reisman, A. Kumar, and J. Motwani, “Flowshop scheduling /sequencing research: A statistical review of the literature, 1952–

1994,” IEEE Trans. on Engineering Management, vol. 44, pp. 316–329, 1997.

[5] J. N. D. Gupta and E. F. Stafford Jr, "Flowshop scheduling research after five decades," European Journal of Operational
Research, vol. 169, pp. 699–711, 2006.

[6] S. R. Hejazi and S. Saghafianz, “Flowshop scheduling problems with makespan criterion: A review,” Int. J. Prod. Res., vol. 43 (14),

pp. 2895–2929, 2005.
[7] L. Sheng and X. Gu, “A Genetic Algorithm with Combined Operators for Permutation Flowshop Scheduling Problems,”

Proceeding of the IEEE International Conference on Information and Automation, pp. 65-70, Hailar-China, 2014.

[8] W. Shao and D. Pi, “A self-guided differential evolution with neighborhood search for permutation flowshop scheduling,” Expert
Systems with Applications, vol. 51, pp. 161-176, 2016.

[9] J. Ceberio, E. Irurozki, and A. Mendiburu, “A Distance-Based Ranking Model Estimation of Distribution Algorithm for the

Flowshop Scheduling Problem,” IEEE Transactions on Evolutionary Computation, vol. 18 (2), pp. 286-300, 2014.
[10] D. S. Palmer, "Sequencing jobs through a multistage process in the minimum total time - a quick method of obtaining a near

optimum," Operational Research Quartetly, vol. 16, pp. 101-107, 1965.

[11] H. G. Campbell, R. A. Dudek, and M. L. Smith, "A heuristic algorithm for the n-job, m-machine sequencing problem,"
Management Science, vol. 16, pp. B630–B637, 1970.

[12] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem, “ Omega,

vol. 11 (1), pp. 91–95, 1983.

[13] R. Ruiz and C. Maroto, “A comprehensive review and evaluation of permutation flowshop heuristics,” European Journal of

Operational Research, vol. 165, pp.479-494, 2005

[14] C. L. Chen, V. S. Vempati, and N. Aljaber. "An application of genetic algorithms for flow shop problems," European Journal of
Operational Research, vol. 80, pp. 389-396, 1995.

[15] C. R. Reeves, “A genetic algorithm for flow shop sequencing,” Computers and Operations Research, vol. 22, pp. 5-13, 1995.

[16] T. Murata, H. Ishibuchi, and H. Tanaka, "Genetic algorithms for flowshop scheduling problems," Computers & Industrial
Engineering, vol. 30, pp. 1061-1071, 1996.

The Permutation Flowshop Scheduling Problem: An Efficient Genetic Algorithm

18

[17] R. Ruiz, C. Maroto, and J. Alcaraz, "Two newrobust genetic algorithms for the flowshop scheduling problem," The International

Journal the Management Science (Omega), vol. 34, pp. 461–476, 2006.
[18] B. Qian, L. Wang, R. Hu, W.-L. Wang, D.-X. Huang, and X. Wang, “A hybrid differential evolution method for permutation

flowshop scheduling,” The International Journal of Advanced Manufacturing Technology, vol. 38 (7–8), pp. 757–777, 2008

[19] Y.-M. Chen, M.-C. Chen, P.-C. Chang, and S.-H. Chen, “Extended artificial chromosomes genetic algorithm for permutation
flowshop scheduling problems,” Computers & Industrial Engineering, vol. 62(2), pp. 536–545, 2012.

[20] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A discrete differential evolution algorithm for the permutation flowshop scheduling

problem,” In Paper presented at the 9th annual genetic and evolutionary computation conference (GECCO2007), 2007.
[21] Y. Liu, M. Yin, and W. Gu, “An effective differential evolution algorithm for permutation flowshop scheduling problem,” Applied

Mathematics and Computation, vol. 248, pp. 143–159, 2014.

[22] E. Taillard, “Benchmarks for basic scheduling problems,” European Journal Operational Research, vol. 64(2), pp. 278–285, 1993.
[23] D. E. Goldberg, GAs in search, optimization and machine learning, Reading, MA, Addison-Wesley, 1989.

[24] M. Mitchell, An introduction to Genetic Algorithms, MIT Press, Cambridge, 1998.

[25] J. Grabowski and J. Pempera, “Some local search algorithms for no-wait flow-shop problem with makespan criterion,” Computers
and Operations Research, vol. 32, pp. 2197-2212, 2005.

[26] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard, “Metaheuristics for Hard Optimization: Methods and Case Studies,” Springer,

New York, 2006.
[27] E. G. Talbi, “Metaheuristics from design to implementation,” Wiley, New Jersey, 2009.

[28] J. L. C Silva, L. S. Rocha, and B. C. H. Silva, “A New Algorithm for Finding all Tours and Hamiltonian Circuits in Graphs,” IEEE

Latin America Transactions, vol. 14, pp. 831-836, 2016.
[29] J. L. C Silva, G. V. R. Viana, and B. C. H. Silva, “An efficient algorithm based on metaheuristic for the no-wait flowshop

scheduling problem,” Proceedings of the 12th Metaheuristics International Conference (MIC 2017), Barcelona, Universitat

Pompeu Fabra, v. 1. pp. 414-423, 2017.
[30] José Lassance C. Silva, G. V. R. Viana, and B. C. H. Silva, “An Efficient Genetic Algorithm for the No-wait Flowshop Scheduling

Problem.” International Journal of Engineering and Science, vol. 10, no. 08, pp. 32-43, 2020.

José Lassance C. Silva, et. al. "The Permutation Flowshop Scheduling Problem: An Efficient

Genetic Algorithm." International Journal of Engineering and Science, vol. 10, no. 09, 2020, pp.

06-18.

