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Abstract:Local dynamics including stability and Hopf bifurcation for the dynamical model of a new butterfly-

shaped chaotic attractor is investigated both analytically and numerically in this paper. Equilibrium points and 

their stability conditions are presented. All the requirements for Hopf bifurcation are also stated. In addition, 

numerically simulations are devised to verify the analytical results. 
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I. INTRODUCTION 
For the past three decades, scientists, engineers and physicists have paid an ernomous attention to 

chaotic nonlinear dynamical systems. Chaos has been an interesting phenomenon after Lorenz [1] discovered it 

in 1963. He proposed three autonomous differential equations to describe Rayleigh-Benard problem. Lorenz's 

chaotic system led many researchers into further investigations. Similar systems sprouted out of the 

investigations such as the Chen system [2]. In 2002, a new coined chaotic attractor was discovered by Lü and 

Chen, called the Lü system [3]. Liu et al [4]. also proposed a new three-dimensional autonomous chaotic system 

that consists of a nonlinear squared terms. Dias et al. [5] studied the existence of singular degenerate 

heteroclinic cycles for a suitable choice of the parameters at equilibrium  E+. Yang and Chen [6] proposed 

another three-dimensional chaotic system which has one saddle point and two stable equilibrium points. Zhang 

et al. [7] studied the Hopf bifurcation of a new chaotic system with chaos entanglement function. Chaotic 

system has been a paramount tool for nonlinear circuit analysis with different methods and Hopf bifurcation is 

one of the leading methods.  

This paper seeks to investigate the local stability and Hopf bifurcation of a new butterfly-shaped 

chaotic attractor. The system proposed has three autonomous governing equations with three chaotic parameters, 

one multiplier xz and one quadratic term x
2 

[8]. The dynamics of the system are studied both analytically and 

numerically. First Lyapunov coefficient method was futher used to determine the supercriticality and the 

subcritility of the system. 

 

II. DYNAMIC MODEL OF THE NEW BUTTERFLY-SHAPED CHAOTIC ATTRACTOR 

SYSTEM 
1.1 Consider autonomous governing systems of the New Butterfly-shaped Chaotic Attractor below 

II.  

 

 
x = 𝑎 𝑥 − 𝑦 

y  =  xz + by

z  =  −𝑥2 − 𝑐𝑧

  

 

(1) 

Where x, y, z are state variables of the system anda, b,c are parameters of the system. 

 

2.1 Symmetric and invariance 

From (1), the system is symmetric about the z-axis with the transformation, (𝑥 , 𝑦, 𝑧 )→ (−𝑥 , −𝑦, − 𝑧, ). This 

implies that the system is invariant for all values of the parameters. 

 

2.2 Equilibrium Points and Stability Analysis 

Setting the right end of (1) to zero, the equation below is obtained 
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𝑎 𝑥 − 𝑦 = 0
𝑥𝑧+ b𝑦 = 0

 −𝑥2 − 𝑐z =   0

        (2) 

 

 

One can obtain equilibrium points for (2) as follows 

  

O 0,0,0 

𝑃+  𝑏𝑐,  𝑏𝑐, −𝑏 

𝑃− − 𝑏𝑐, − 𝑏𝑐, −𝑏 

  (3) 

We first analyse the stability of the sysytem by linearizing it at O 0,0,0 . 

Let D0 be the jacobian matrix of (2) evaluated at O 0,0,0  

 D0 =  
−𝑎 𝑎 0
𝑧 𝑏 𝑥

−2𝑥 0 −𝑐
 =   

−𝑎 𝑎 0
0 𝑏 𝑥
0 0 −𝑐

  (4) 

The characteristic equation of the system corresponding to O 0,0,0  is  

  𝜆𝐼 − 𝐷0 =   𝜆 + 𝑎  𝜆 − 𝑏  𝜆 + 𝑐 =  0 (5) 

𝜆1 = −𝑎, 𝜆2 = 𝑏, 𝜆3 = −𝑐 

The equilibrium point is stable when 𝑎, 𝑐 > 0 and 𝑏 < 0  and unstable when 𝑎 < 0  and or 𝑏 > 0 or 𝑐 < 0 

Hopf birfurcation does not occur at the equilibrium point O 0,0,0  due to the absence of pure imaginary pair of 

eigenvalues evolving from the characteristics equation. 

Further stability is carried on the remaining two fixed points. The system is symmetric and invariant, we 

therefore considered the stability at P+ only. Let D+ be the jacobian matrix evaluated at the equilibrium point 

P+  bc,  bc, −b . 

 D+ =  
−𝑎 𝑎 0
𝑧 𝑏 𝑥

−2𝑥 0 𝑐
 =   

−𝑎 𝑎 0

−𝑏 𝑏  𝑏𝑐

−2 𝑏𝑐 0 𝑐

  (6) 

The characteristic equation corresponding to D+ is 

  𝜆3 +  𝑎 + 𝑐 − 𝑏 𝜆2 +  𝑎𝑐 − 𝑏𝑐 − 𝑎𝑏 − 𝑎𝑧 𝜆 +  −2𝑎𝑏𝑐 − 𝑎𝑐𝑧 − 2𝑎𝑥2  = 0 (7) 

The characteristic equation corresponding to the quilibrium point P+  bc,  bc, −b  is
 

𝜆3 +  𝑎 + 𝑐 − 𝑏 𝜆2 +  𝑎𝑐 − 𝑏𝑐 𝜆 − 2𝑎𝑏𝑐 =  0 (8) 

By Routh-Hurwitz criterion , P+ is stable if and only if the following conditions are satisfied 

 
 

𝑎 + 𝑐 − 𝑏 > 0
 𝑎 + 𝑐 − 𝑏  𝑎𝑐 − 𝑏𝑐 > 0

  

 
(9) 

2.3 Hopf Bifurcation 

According to hopf bifurcation theory [9], the characteristic equations corresponding toP+ and P−  has purely 

imaginary eigenvalues. This gives an indication that if Eg.(8) further satisfies the following conditions, hopf 

bifurcation may likely occur. 

 

 
 

 
𝑅𝑒 𝜆 |𝑐=𝑐0

= 0

𝑅𝑒 𝜆 |𝑐=𝑐0
≠ 0

𝑑

𝑑𝑏
𝑅𝑒 𝜆 |𝑐=𝑐0

≠  0

  (10) 

Where, 𝑐0 is the critical value of of c for Hopf bifurcation 

 

Letting 𝜆2 = 𝑖𝜔, 𝜆3 = −𝑖𝜔, where 𝜔 > 0, substituting 𝜆2 = 𝑖𝜔 into Eq.(9), we obtain  

 

  𝑖𝜔 3 +  𝑎 + 𝑐 − 𝑏  𝑖𝜔 2 +  𝑎𝑐 − 𝑏𝑐  𝑖𝜔 − 2𝑎𝑏𝑐 =  0 (11) 

Separating the real and the imaginary parts of Eq.(11) yields 

 

  
𝜔2 =  𝑏𝑐 − 𝑎𝑐 

𝜔2 = −
2𝑎𝑏𝑐

𝑎 + 𝑐 − 𝑏

  (12) 

With further conditions as follows 

  

 𝑏𝑐 − 𝑎𝑐 > 0

−
2𝑎𝑏𝑐

𝑎 + 𝑐 − 𝑏
> 0

𝑎 + 𝑐 − 𝑏 > 0

  (13) 
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Also, 𝑐0 can be derived as  

 𝑐0 =
−𝑎2 + 4𝑏𝑎 − 𝑏2

−𝑏 + 𝑎
 (14) 

The eigenvalues corresponding to it are 

 𝜆1 =  − 𝑎 + 𝑐 − 𝑏 , 𝜆2,3 = ±𝑖 𝑎𝑐 − 𝑏𝑐 (15) 

From Eq.(10), when c is bigger than 𝑐0, the equilibrium point P+ is stable. Once c is smaller than 𝑐0, it becomes 

stable. 

The first Lyapunov coefficient [10] is used to discuss the supercriticality or subcritility of the 

Hopfbifurcation. Let 𝐶𝑛be n-dimensional complex Hilbert space with inner product . 

 𝑥, 𝑦  =   𝑥𝑖𝑦𝑖

𝑛

𝑖=1

,    for 𝑥 = (𝑦1 , 𝑦2 , . . . 𝑦𝑛 )𝑇 , 𝑥𝑖𝑦𝑖 ∈ 𝐶 𝑖 = 1,2, . . . 𝑛 , 

Introduce norm  𝑥 =   𝑥, 𝑥 and 𝐶𝑛 is a Hilbert space. 
 

 𝑥 = 𝐴𝑥 + 𝐹 𝑥 , 𝑥 ∈ 𝑅𝑛  (16) 

 

Where 

 𝐹 𝑥 =
1

2
𝐵 𝑥, 𝑥 +

1

6
𝐶 𝑥, 𝑥, 𝑥 + 𝑂 (17) 

𝐵 𝑥, 𝑥  and 𝐶 𝑥, 𝑥, 𝑥  are bilinear and trilinear functions respectively.  

Also, we introduce the adjoint eigenvector p∈ 𝐶𝑛which satisfies the following following condions. 

 𝑀𝑇𝑝 = −𝑖𝜔𝑝, 𝑀𝑇𝑝 = 𝑖𝜔𝑝     𝑎𝑛𝑑    𝑝, 𝑞 = 1 (18) 

When 𝑎 = 2, 𝑏 = 1, 𝑡ℎ𝑒𝑛 𝑐0 = 3, 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 

The Jacobian matrix of Eq.(2) evaluated at P+ is 

 D+ =

 
 
 
 
 

−2 2 0

−1 1
 15

5

−2
 15

5
0

3

5  
 
 
 
 

 (19) 

The first Lyapunov coefficient method of the system (2) at the equilibrium point P+ is written as[9] 

 
𝑙1 0 =

1

2
𝑅𝑒  𝑝, 𝐶 𝑞, 𝑞, 𝑞    − 2 𝑝, 𝐵 𝑞, 𝑀−1𝐵 𝑞, 𝑞    

+  𝑝, 𝐵 𝑞  2𝑖𝜔𝐸 − 𝑀 −1𝐵 𝑞, 𝑞    

(20) 

Next, we calculate the corresponding vector  𝑝, 𝑞   of the matrix D+ as in Eq,(7). After complex computations, 

we have the vector quantity  𝑝, 𝑞   corresponding to the matrix D+that satisfy 

𝑀𝑞 = 𝑖𝜔𝑞, 𝑀𝑇𝑝 = −𝑖𝜔𝑝   𝑎𝑛𝑑    𝑝, 𝑞 = 1. 

For  

 𝑞 =

 

 
−

5 127 + 18 43 

2
−

1125𝑖  43 

6

−
5 127 + 18 43 

2
+

15𝑖  43 

6

−
5 127 + 18 43 

2
−

1125𝑖  43 

6

 

 

 (21) 

 

 𝑝 =

 

 
−

450 127 + 18 43 

2
−

1125𝑖  43 

6

−
150 127 + 18 43 

2
+

15𝑖  43 

6

−
375 127 + 18 43 

2
−

1125𝑖  43 

6

 

 

 (22) 
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 𝑞 =

 

 
−

450 127 + 18 43 

2
+

1125𝑖  43 

6

−
150 127 + 18 43 

2
−

15𝑖  43 

6

−
375 127 + 18 43 

2
+

1125𝑖  43 

6

 

 

 (23) 

 

Which satisfy 𝑀𝑞 = 𝑖𝜔𝑞, 𝑀𝑇𝑝 = −𝑖𝜔𝑝   𝑎𝑛𝑑    𝑝, 𝑞 = 1. 

For system (2), the bilinear and trilinear functions are 

 𝐵 𝑋, 𝑋′ =  𝑦𝑧′ , 𝑥𝑧′ , 𝑥𝑦 ′ , 𝐶 𝑋, 𝑋′ , 𝑋′′ =  0,0,0 𝑇  (24) 

  𝑝, 𝐵 𝑞, 𝑀−1𝐵 𝑞, 𝑞    = −12.33529321 + 21.033974𝑖 (25) 

  𝑝, 𝐵 𝑞  2𝑖𝜔𝐸 − 𝑀 −1𝐵 𝑞, 𝑞   =  −13.32215292 − 3.734022300𝑖 (26) 

Consequently, we have  

 

 
𝑙1 0 =

1

2
𝑅𝑒  𝑝, 𝐶 𝑞, 𝑞, 𝑞    − 2 𝑝, 𝐵 𝑞, 𝑀−1𝐵 𝑞, 𝑞    

+  𝑝, 𝐵 𝑞  2𝑖𝜔𝐸 − 𝑀 −1𝐵 𝑞, 𝑞   = −25.9574 

(27) 

Base on the sign of the first Lyapunov coeeficient, the Hopf bifurcation is supercritical. 

 

III. NUMERICAL SIMULATIONS 
 Numerical results are obtained by using fourth-order Runge-Kutta method in this section. We fix 

𝑎 = 2and 𝑏 = 1,to obtain the phase potraits and trajectories as in Figures 1-4. For𝑐 > 𝑐0, Figure 1(a) and (b), 

shows the phase potrait (x(t) y(t) z(t)) and (x(t) y(t)) respectively whiles Figure 2(a) and 2(b) shows the 

trajectories of (x(t)) and (y(t)) respectively. It could be seen that stable for 𝑐 > 𝑐0 the equilibrium point is stable. 

  Similarly, for𝑐 < 𝑐0,Figure 3(a) and (b), shows the phase potrait (x(t) y(t) z(t)) and (x(t) y(t)) respectively 

whiles Figure 4(a) and (b) shows the trajectories of (x(t)) and y(t) respectively. When 𝑐 < 𝑐0 , The system 

generate hopf bifurcation and it could be seen from the above that the results agree with the analytical one. 

 
(a) Phase potrait of x(t)  y(t)  z(t)(b)Phase potrait of x(t)  y(t) 

Figure 1Phase Potrait for a=2, b=1 and c=4 

 

 
(a) Trajectories of x(t) (b)Trajectories of y(t) 

Figure 2Trajectoriefor a=2, b=1 and c=4 
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(a) Phase Potrait of x(t) y(t) z(t)                               (b) Phase Potrait of x(t) y(t) 

Figure 3 Phase Potrait for a=2, b=1 and c= 0.6 

 

 
(a)Trajectories of x(t)  (b)Trajectories of y(t) 

Figure 4Trajectoriefor a=2, b=1 and c=0.6 

 

IV. CONCLUSION 
 Local dynamics including stability and Hopf bifurcation for the dynamical model of the new butterfly-

shaped chaotic attractor is investigated both analytically and numerically in this paper. Hopf bifurcation theorem 

and the first Lyapunov coefficient method are used to investigate the conditions and types of bifurcation in the 

system. From the numerical analysis,it is presented that the Hopf bifurcation of the system is supercritical. 

 The results provide some guidance for nonlinear circuit designs. 
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