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I. Introduction 
Mathematical model of multiphase and multicomponent media are being built by using conservation laws. The 

conservation laws approach assumes that all phases and components, including particulate media modeled as a continuous 

medium, each of which is formally distributed throughout the computational domain. Thus at each point in the consedered 

domain all the parameters of each phase (continuum) are formally defined. The big advantage of a mathematical model 

based on the method of conservation laws is the physical correctness of the received systems of differential equations. 

Multiphase and multicomponent media with phase pressure equilibrium occur in the petroleum and chemical industry, 

energetics and other fields. 

The study of flow of viscous compressible / incompressible liquids based on the solutions to two-speed complete 

hydrodynamic equations is of great relevance.   As known from the literature, there are very limited number of cases 

admitting analytic integration of the Navier-Stokes equations [1]. In [2] a description of the flow of an incompressible two-

speed viscous liquid for the case of phase pressure equilibrium at constant volume saturation substances is giveng by using 

scalar functions. A system of differential equations for these functions is obtaned also fundamental solution to the system 

in the case of the three-dimensional stationary flows of viscous two-speed continuum with the phase pressure equilibrium 

is built in [3]. These solutions can be useful for testing of numerical methods for solving the two-velocity hydrodynamics 

equations. 

In vector analysis, the field theory and mathematical physics,  the classical differential identities are played very 

important role. In  [4] a series of formulas of vector analysis in the form of the differential identities of the second and third 

order connecting a Laplacian of arbitrary smooth scalar function of two independent variables u ( x , y ) , the module of a 

gradient of this function, angular value and the direction of a gradient is obtained. The results of  [4] are generalized in [5] 

in two ways: for a three-dimensional case and for arbitrary (not necessarily potential)  smooth vector field v . A series  of 

formulas of vector analysis in the form of differential identities which, on the one hand, connecting the module v  and the 

direction   of an arbitrary smooth vector field v v   in three-dimensional ( ( x , y , z ))v v  and in two-

dimensional ( ( x , y ))v v  cases is taken. On the other hand, these formulas separate the module v  and the direction 

 of a vector field v v  . Namely, the main identity compares any smooth vector field Q = P + S , where the field 

P  is defined only  by the module v   of the field v  and is potential both in two-dimensional  and in three-dimensional 

cases, and the field S is defined only by the direction   of the field and is solenoidal in a two-dimensional case. 

Applications of the obtaned identities to the Euler hydrodynamic equations are given. 

In this work, additional conservation laws for the equations of two-speed hydrodynamics with one 

pressure are obtaned. 

 

II. Auxiliary Statements 
In [5], A. G. Megrabov has received important differential identities connecting the module and the direction of 

a vector field. Let us provide them. 

Theorem 1. For any vector feild ( ( x , y , z )) v v v   with the componrnts  
1

k
( x , y , z ) C ( D ),   

k 1, 2 , 3,  modul 0v  in D  and direction   the following identety holds 
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For the vector field S   any of  the following representations takes place  
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( = = ro t ×       is the derivative of the vector   in the direction  ), 

     
2
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where - s in co s , - s in co s ,       i j k    

 c o s , d iv ,           S k S        (6) 

where  is the curvature of the field line of the field ,v   is its  main normal. For  we have the formula 

2 2 2 2
s in

s s
   , where   ,

s
       s

       are the derivatives of the angles ,   in the 

direction  . 

 The main identety (1) can also be rewritten in the following form 

i i
ln ro t , 1, 2 ,i    Q H v F  

where  
2

1 2 1 2
c o s ro t tg , 2 c o s ro t , , c o s ,            H k H F k F k  so that 

vectors , ,
i i

H F  and S  are determined only by angles , ,   that is by the direction   of the field v . 

 If the property 0v  in D  is not assumed, then identety  (1) takes the form  

2

d iv ro t ,     W v v v v v V  

where  

 
d e f

2 2 21
d iv ro t d iv ro t .

2
              V v S v v v v v v v v     

Other formulas for   ,W V can be derived by substituting any expression for S from (4)-(6) in the last 

equalities.  

Theorem 2. On conditions of theorem 1 and       
2

, , 1, 2 , 3  
k

x y z C D k , we have   
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d iv 2 s in
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v

 , 

where    ro t ro t .             B  In addition, the identity  

   
2

d iv ro t
d iv 0 d iv ln 0 , 1, 2

i i
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v v v v
Q P H v H

v

 

takes place which can be considered as a conservation law (its differential form) with an integral form for the  

stream  

   0 ,
i

S

d S    Q P H  where S  is piecewise smooth boundary of the domain  D  with a normal  . 

 In theorems 1 and 2 the followings denotations are accepted: characters  a b  and  a b  designate 

scalar and vectorial product of vectors a  and ; b  is  Hamiltonian operator (nabla);    is Laplace operator; 

D   is some domain   in the  space of , , ;x y z  , ,i j k  are the  unit vectors along the x -, y -, and z - axes of a 
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rectangular Cartesian coordinate system respectivele;   1 2 3
, ,x y z      v v i j k  is a vector field on the 

domain D ;    , ,
k k

x y z   are scalar functitions, 1, 2 , 3,k   
2 2 2 2

1 2 3
;    v   , ,x y z   is 

angle of slope of the vector  1 2
 i j  to the x -axes  so that  

1 2
c o s , s in ,

g g

 
    where 

2 2

1 2
g    and    , ,x y z  is the polar angel of the point  1 2

,     on the plane , ;   

 , ,x y z   is the angel  between the vector v  and z - axes: 
3

a rc c o s

d e f 
 

v
 so that 

3
0 , c o s ,


    

v
 s in

g
 

v
 (that is ,   sferical coordinates in the space 

1 2 3
, , .         At the same time ,v v   where 

 , c o s s in s in s in c o s         i j k   is the diraction vector of the vector field  1 .v   

 In two dimentional case we have    

   1 2 3
x , y , 0 , co s s in ,

2


               v v i j v i j    where the angel   is 

defined by (7), 0;  B  for any    
1

,x y C D  we have  ro t ,
y x

   k i j  where .








x

x
  

 It follows from theorem 1 that 

Theorem 3. For any  two-dimensional field  x , yv  with the components     
1

, , 1, 2 ,  
k

x y C D k  

with the module 0v  in the domain D  and with the direction     the following identety holds  
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In additation,    ro t 0 ,     S k S  that is field  vector lines of the vector field S  coincide with the 

level lines of the scalar field of polar angels  , . x y    Moreover, if  
2

( , ) , 
k

x y C D  1, 2 ,k  then  
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In the  conservation law of the theorem 2 we have 0 , 1, 2 ,
i

i H  

As it is well-known [6], any smooth vector field can be expressed as the sum of the gradient of some scalar and 

the rotor of some vector.  The identity (8) gives such the expression for the vector field .Q  When 

 u x , y v ,  theorem 3 impleis the identities obtained in [4]. 

 

III. The Equations Of Two-Speed Hydrodynamics With Pressure Equilibrium In Components 

And Additional Conservation Laws 
In [7], on the basis of conservation laws, invariance of the equations with respect to Galilei 

transformations and conditions of thermodynamic coherence the non-linear two-speed model of fluid flow 

through a deformable porous medium is constructed. Equations of motion of two-speed medium with one 

pressure in the isothermic case have the form [7,8]  
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where v  and  v  are the speed vectors of components forming a two-speed continuum with partial densiteis   

and  .;        is total density of the continuum; f  is mass force vector carried to a mass unit. The 

equation of state of the continuum closes system of differential equations (9) and is given by the equation of 

state  

  
2

, .p p  v v  

It is convenient to enter new pressure  

    
2 2

, .
2

pp


   v v v v


   

In the terms of  ,p p  the last two equvation of the system (9) can be transformed in the form 
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In the terms of vectors , , , , , , , , , , , , ,
i i i i

W V S Q P H F W V S Q P H F     defind in the theorem 1, the 

system of equvations  (10), (11) can be written down in any of the following forms (symbols without tilde and 

with a tilde fall into to the corresponding components of the continuum): 

 
2

21 1
d iv p ,

t 2 2
 

 


        



v vv
W v v f


   

 1
d iv p ,

t 2


 


       



v vv
V v v f


 


      (12) 

 
 

d e f

2

1 1
d iv p

t 2

ro t , 1, 2 .
i i

i


  

 
           

 

   

v vv
G v v f S Q P

G H F


 

    (13) 

 
2

21 1
d iv p p ln ,

t 2 2


 

   


          



v vv
W v v f


   

 
   

 1
d iv p ln ,

t 2


 

   


         



v vv
V v v f


   

 
    (14) 

 
 

2
d e f

2

1 1
d iv p p ln

t 2

ro t , 1, 2 .
i i

i




    

  
             

  

   

v vv
G v v f S Q P

G H F


     

  

  

        (15) 

 

In the case of absence of mass forces 0 ,f  the system (9) has the solytion 0 , 0 , v v  

0 0 0
, , p p        for the  liquids in a state of rest with the common  pressure 

0
p p .  When the 
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components are homogeneous and  incompressible, we have ,co n s t co n s t   . Therefore,  

d iv 0 , d iv 0 ro t , v ro tA ,    v v v A   

where ,A A  are corresponding vector potentials of the speeds ,v v .  In other words the vectors ,v v  are 

solenoidal. In this case the equvations of  two-velocity hydrodynamicss can be represented in the form 
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where ro t ;U   f M  ,
t t

A A  are the derivatives of vectors ,A A  with respect to time. It 

follows that when the velocities and physical densities of components are the same we have , W W V V   

and  as a result the formulas for the vector fields ,W V .   

Thus, for the solution  , , pv v  to the two-speed hydrodynamics  equations for the homogeneous 

incompressible liquids can be applied theorem 2.  

From (13), (15) and theorem 2 we get  

 

Theorem 4. For any flow of two-speed medium consisting of two incompressible components with the same 

pressure  0 , 0 v v the followng identities take place   
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Moreover, besides the common conservation laws for smooth vector fields stated  in theorem 2, the conservation 

laws of differential forms  
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and integral forms  

    d 0 , d 0 , 1, 2 .
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are valid; here the vectors ( )
i i

H H  defined in theorem 1 depend only on the angles of directions of velosities 

   x , y , z , t , x , y , z , t ;v v S  is piecewise smooth boindary of the domain D ;  is a unit normal to the .S  
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In the  irrotational motion (as u , u   v v  ) case denoting  
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From these identeties it foolows that  

     u u x , y u u x , y ;
2 2
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In the planar case we get    x , y , t , x , y , t , c o s s in ,        v v v v i j      

co s s in  i j  , where  x , y , t  and  x , y , t   are the slope of  vector lines of the 

field  v v  as t co n s t . For incompressible media we have d iv 0 , d iv 0 , v v  

   
2 2 2 2 2 2

u u ro t u , u u ro t u , u u , u u ,
y x y x x y x y

          v i j k v i j k        where 

 u u x , y , t  and  u u x , y , t  are the flow functions. 

From equations (13), (15), and theorem 3 it follows 

 

Theorem 5. The system of two-speed hydrodynamics equations with one  pressure (10), (11) for a planar 

motion    x , y , z , t , x , y , z , t , 0 , 0  v = v v = v    can be represented in the forms 

  ro t x , y , t ,G k      ro t x , y , t d iv 0 ,  G k G    d iv 0 ,G  
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where the fields  , , ,G Q G Q  defined in (8), (13), and (15). 

From theorem 3we have 

 

Corollary 1. Both in the case of plane irrotational motion    ( u x , y , t , u x , y , t )   v v   with potentials 
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