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Abstract: This paper provides an easy and effective approach to the load flow solution of Radial distribution 

networks. As compared to the various methods proposed in the past, this work presents a new technique 

consisting of load flow solution of the network, facilitated by the identification of all the nodes beyond a 

particular branch. The proposed method is quite accurate and reliable for the system having any number of 

nodes. The primary target of this work is to evaluate the results with high precision and convergence. 
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I. Introduction 
Load-Flow is defined as the computational procedure required to determine the steady state operating 

characteristics of a power system network. The aim of power flow calculations is to determine the steady state 

operating characteristics of a power transmission/generation system for a given set of loads. There are a number 

of efficient and reliable load flow solution techniques, such as; Gauss-Seidel, Newton-Raphson and Fast 

Decoupled Load Flow [1,2,3,4,5,6,7]. 

 In 1967, Tinney and Hart [1] developed the classical Newton based power flow solution method. Later 

work by Stott and Alsac [2] made the fast decoupled Newton method. The algorithm made by [2] remains 

unchanged for different applications. Even though this method worked well for transmission systems, but its 

convergence performance is poor for most distribution systems due to their high R/X ratio which deteriorates 

the diagonal dominance of the Jacobian matrix. For this reason, various other types of methods have been 

presented. Those methods consist of backward/forward sweeps on a ladder system. 

 Baran and Wu [8], proposed a methodology for solving the radial load flow for analyzing the optimal 

capacitor sizing problem. In this method, for each branch of the network three non-linear equations are written 

in terms of the branch power flows and bus voltages. The number of equations was subsequently reduced by 

using terminal conditions associated with the main feeder and its laterals, and the Newton- Raphson method is 

applied to this reduced set. The computational efficiency is improved by making some simplifications in the 

jacobian. Chiang [9] had also proposed three different algorithms for solving radial distribution networks based 

on the method proposed by Baran and Wu .He had proposed decoupled, fast decoupled & very fast decoupled 

distribution load-flow algorithms. Goswami and Basu [10] had presented a direct method for solving radial and 

meshed distribution networks. However, the main limitation of their method is that no node in the network is the 

junction of more than three branches, i.e. one incoming and two outgoing branches. Jasmon and Lee [11] had 

proposed a new load-flow method for obtaining the solution of radial distribution networks. They have used the 

three fundamental equations representing real power, reactive power and voltage magnitude derived in [10].  

 Das et al. [12] had proposed a load-flow technique for solving radial distribution networks by 

calculating the total real and reactive power fed through any node using power convergence with the help of 

coding at the lateral and sub lateral nodes for large system that increased complexity of computation. This 

method worked only for sequential branch and node numbering scheme. Haque [13] presented a new and 

efficient method for solving both radial and meshed networks with more than one feeding node.  

Eminoglu and Hocaoglu [14] presented a simple and efficient method to solve the power flow problem 

in radial distribution systems which took into account voltage dependency of static loads, and line charging 

capacitance. Prasad et. al. [15] proposed a simple and efficient scheme for computation of the branch currents in 

RDN. The proposed load flow algorithm exploits the tree- structure property of a RDN and claims the efficient 

implementation of LFA algorithm. Ghosh and Sherpa [16] presented a method for load-flow solution of radial 

distribution networks with minimum data preparation. This method used the simple equation to compute the 

voltage magnitude and has the capability to handle composite load modeling. But in order to implement this 

algorithm, a lot of programming efforts are required. Sivanagaraju et al. [17] proposed a distinctive load flow 

solution technique which is used for the analysis of weakly meshed distribution systems. A branch-injection to 

branch current matrix is formed (BIBC) and this matrix is formed by applying Kirchhoff‟s current law for the 

distribution network.  
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Kumar and Arvindhababu [18] presented an approach for power flow solutions to obtain a reliable 

convergence in distribution systems. The method was simpler than existing approaches and solved iteratively 

similar to Newton-Raphson (NR) technique. Augugliaro et al. [19] had proposed a method for the analysis of 

radial or weakly meshed distribution systems supplying voltage dependent loads. Advantages of this method 

are: its possibility to take into account of any dependency of the loads on the voltage, very reduced 

computational requirements and high precision of results.  

Due to the ill conditioned nature of the distribution systems the conventional methods of load-flow 

analysis used for transmission systems failed to converge. Unlike transmission networks, distribution networks 

are radial in nature. The distribution networks have high R/X ratio compared to the transmission networks 

because X>>R in distribution systems as compared to the transmission systems. So therefore arises a need to 

develop new load-flow techniques of load-flow analysis which can assure convergence for distribution systems. 

This paper aims to develop a new load-flow technique which requires lesser data preparation. This method 

shows good and fast convergence for any kind of numbering scheme of the nodes and laterals. 

 

II. Assumptions 

While implementing the calculations it was assumed that: 

a. Three-phase radial distribution networks were balanced and represented by their single-line diagrams. 

b. Charging capacitances are neglected at the distribution voltage level (medium level). 

 

III. Method for load flow calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Single line diagram of a distribution feeder. 

 

Figure 1 shows the single line diagram of a distribution feeder. Consider branch 1. The node voltage of 

receiving-end node can be written as: 

V(2) = V(1) - I(1)Z(1)      (1) 

Similarly, for branch 2, 

V(3) = V(2) - I(2)Z(2)      (2) 

Substation voltage is taken as 1.00 pu 

 

Since the voltage at the substation V(1) is known, so if I(l) is known, i.e. current of branch 1, V(2) can 

be easily calculated from eqn.(1). Once V(2) is known, it is easy to calculate V(3) from eqn. (2), if the current 

through branch 2 is known. Similarly, voltages of nodes 4,5,.....10 can easily be calculated if all the branch 

currents are known. Therefore, a generalized equation of receiving-end voltage, sending-end voltage, branch 

current and branch impedance can be defined as 

V(m2) = V(m1) - I(jj)Z(jj)                    (3) 

where jj is the branch number 

m2 = IR(jj)         (4) 

m1 = IS(jj)         (5) 

 

Current through branch 1 is equal to the sum of the load currents of all the nodes beyond branch 1 plus 

the sum of the charging currents of all the nodes beyond branch 1, but since charging capacitances are 

neglected, hence vanishing charging currents, the current through branch 1 is equal to the sum of only the load 

currents of all the nodes beyond branch 1, i.e. 

I(1) = IL(2) + IL(3) + IL(4) + IL(5) + IL(6) + IL(7) + IL(8) + IL(9) + IL(10) 
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Therefore, if it is possible to identify the nodes beyond all the branches, it is possible to compute all the branch 

currents. Identification of the nodes beyond all the branches is realized through a method as explained in next 

section. 

The load current at node m2 is expressed by 

IL(m2) = PL(m2) - j QL(m2)     (6) 

         V*(m2) 

where PL(m2) is the real power load at node m2 and QL(m2) is the reactive power load at node m2. 

The real and reactive power losses of branch jj are given by : 

LP(jj) = |I(jj)|
2
R(jj)      (7) 

LQ(jj) = |I(jj)|
2
X(jj)      (8) 

 

IV. Determination Of The Nodes Beyond All The Branches 
For jj = 1 (first branch of Fig. 1) , IR(jj) = IR(1) = 2; check whether IR(1) = IS(i) or not for i = 2, 3, 4, 

...,10. It is seen that IR(1) = IS(2) = 2; the corresponding receiving-end node is IR(2) = 3.  

  Note that there should not be any repetition of any node while identifying nodes beyond a particular 

branch [20], and this logic has been incorporated in the proposed algorithm. 

 From the above discussion, it is seen that node 2 is connected to node 3. Similarly, the proposed logic 

will identify the nodes which are connected to node 3. Firstly, it will check whether node 3 is connected to any 

other node. It is seen that node 3 is connected to nodes 4 and 7. Similarly, the proposed logic will check whether 

nodes 4 and 7 are connected to any other nodes. This process will continue unless all nodes are identified 

beyond branch 1. This will help to obtain load flow solution by summation of load currents of all the nodes 

beyond a particular branch. 

 The total current flowing through branch 1 is equal to the sum of the load currents of all nodes beyond 

branch 1.  

 Note that, if the receiving-end node of any branch in Fig. 1 is an end node of a particular lateral, the 

total current of this branch is equal to the load current of this node itself. 

 

V. Convergence Criterion 
The maximum voltage mismatches at the network nodes is used as convergence criterion. The nodal 

current injections, at each iteration, are calculated using the scheduled nodal power injections and node voltages 

from the previous iteration. The node voltages at the same iteration are then calculated using these nodal current 

injections. The voltage magnitudes at each node in present iteration are compared with their values in previous 

iteration. If the error is within the tolerance limit, the procedure is stopped. Otherwise the steps of calculation 

and check for convergence are repeated. At kth iteration, the voltage mismatch at node i can be calculated as 

   Δ V(i)k = V(i)k - V(i)k-1 ; i = 1,2,3,.......NB 

 

VI. Load Modeling 
In distribution systems, because of the voltage-dependent characteristics of load, the constant load 

model is no longer suitable for accurate power flow analysis. Load models usually can be classified into two 

main categories: static and dynamic. Since power flow analysis is mainly performed for static states of power 

systems, only static load is considered here. 

 

Normally, Static Load Can Be Described Using One Of The Following Models: 

(i)  Constant power model (constant P and Q), i.e., the load power doesn‟t vary with the voltage magnitude; 

(ii) Constant impedance model (constant Z), i.e., the load power varies with the square of the voltage magnitude; 

(iii) Constant current model (constant I), i.e., the load power varies with the voltage magnitude only; 

 

Here the load is modeled as polynomial load as: 

P = P0(a0 + a1V + a2 V
2
)      (9) 

Q = Q0(b0 + b1V + b2 V
2
)      (10) 

where V is the pu value of the node voltage; 

P0, Q0 are the real power and reactive power consumed at the specific node under the reference voltage; 

a0, b0 are the parameters for constant power (constant P and Q) load component i.e. a0 = b0 =1 and ai = bi = 0 for 

i = 1,2,3; 

a1,b1 are the parameters for constant current (constant I) load component i.e. a1 = b1 =1 and ai = bi = 0 for i = 

0,2,3; 

a2, b2 are the parameters for constant impedance (constant Z) load component i.e. a2 = b2 =1 and ai = bi = 0 for i 

= 0,1,3; 

Composite load modeling is combination of CP, CI and CZ. 
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VII. Example 
A 69-node (shown in figure 2) example has been considered to show the effectiveness of the proposed 

method. Base values are 12.66 kV and 100 MVA. Line data and load data for 69-node radial distribution 

network is shown in Table 1(as available in [21]). 

Table 2 shows the results of voltage magnitude at each node for all of the load models discussed above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 69-node radial distribution network 

 

VIII. Conclusion 
The main target of this work was to provide a new and efficient load flow method for Radial 

Distribution systems. The proposed method utilized simple and flexible algorithm steps to evaluate the results. 

The performance of the method has been tested on a 69-node system wherein, it provides excellent convergence 

characteristics. It takes full advantage of the radial structure of the distribution systems, to achieve high speed 

and low memory requirements.  
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Table 1.  Line Data and Load Data of 69 Node Radial Distribution Network 

Branch No. Sending end Receiving end 
Branch 

Resistance (Ω) 

Branch 

Reactance (Ω) 
PL (kW) QL (kVAr) 

1 1 2 0.0005 0.0012 00.00 00.00 

2 2 3 0.0005 0.0012 00.00 00.00 

3 3 4 0.0015 0.0036 00.00 00.00 

4 4 5 0.0251 0.0294 00.00 00.00 

5 5 6 0.3660 0.1864 2.600 2.200 

6 6 7 0.3811 0.1941 40.40 30.00 

7 7 8 0.0922 0.0470 75.00 54.00 

8 8 9 0.0493 0.0257 30.00 22.00 

9 9 10 0.8190 0.2707 28.00 19.00 

10 10 11 0.1872 0.0619 145.0 104.00 

11 11 12 0.7114 0.2351 145.0 104.00 

12 12 13 1.0300 0.3400 8.000 5.000 

13 13 14 1.0440 0.3450 8.000 5.500 

14 14 15 1.0580 0.3496 00.00 00.00 

15 15 16 0.1966 0.0650 45.50 30.00 

16 16 17 0.3744 0.1238 60.00 35.00 

17 17 18 0.0047 0.0016 60.00 35.00 

18 18 19 0.3276 0.1083 00.00 00.00 

19 19 20 0.2106 0.0696 1.000 00.60 

20 20 21 0.3416 0.1129 114.0 81.00 

21 21 22 0.0140 0.0046 5.000 3.500 

22 22 23 0.1591 0.0526 00.00 00.00 

23 23 24 0.3463 0.1145 28.00 20.00 

24 24 25 0.7488 0.2475 00.00 00.00 

25 25 26 0.3089 0.1021 14.00 10.00 

26 26 27 0.1732 0.0572 14.00 10.00 

27 3 28 0.0044 0.0108 26.00 18.60 

28 28 29 0.0640 0.1565 26.00 18.60 

29 29 30 0.3978 0.1315 00.00 00.00 

30 30 31 0.0702 0.0232 00.00 00.00 

31 31 32 0.3510 0.1160 00.00 00.00 

32 32 33 0.8390 0.2816 14.00 10.00 

33 33 34 1.7080 0.5646 19.50 14.00 

34 34 35 1.4740 0.4873 6.000 4.000 

35 3 36 0.0044 0.0108 26.00 18.55 

36 36 37 0.0640 0.1565 26.00 18.55 

37 37 38 0.1053 0.1230 00.00 00.00 

38 38 39 0.0304 0.0355 24.00 17.00 

39 39 40 0.0018 0.0021 24.00 17.00 

40 40 41 0.7283 0.8509 1.200 1.000 

41 41 42 0.3100 0.3623 00.00 00.00 

42 42 43 0.0410 0.0478 6.000 4.300 

43 43 44 0.0092 0.0116 00.00 00.00 

44 44 45 0.1089 0.1373 39.22 26.30 

45 45 46 0.0009 0.0012 39.22 26.30 

46 4 47 0.0034 0.0084 00.00 00.00 

47 47 48 0.0851 0.2083 79.00 56.40 

48 48 49 0.2898 0.7091 384.7 274.0 

49 49 50 0.0822 0.2011 384.7 274.0 

50 8 51 0.0928 0.0473 40.50 28.30 

51 51 52 0.3319 0.1114 3.600 2.700 
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52 9 53 0.1740 0.0886 4.350 3.500 

53 53 54 0.2030 0.1034 26.40 19.00 

54 54 55 0.2842 0.1447 26.00 17.20 

55 55 56 0.2813 0.1433 00.00 00.00 

56 56 57 1.5900 0.5337 00.00 00.00 

57 57 58 0.7837 0.2630 00.00 00.00 

58 58 59 0.3042 0.1006 100.0 72.00 

59 59 60 0.3861 0.1172 00.00 00.00 

60 60 61 0.5075 0.2585 1244.0 888.0 

61 61 62 0.0974 0.0496 32.00 23.00 

62 62 63 0.1450 0.0738 00.00 00.00 

63 63 64 0.7105 0.3619 227.0 162.0 

64 64 65 1.0410 0.5302 59.00 42.00 

65 11 66 0.2012 0.0611 18.00 13.00 

66 66 67 0.0047 0.0014 18.00 13.00 

67 12 68 0.7394 0.2444 28.00 20.00 

68 68 69 0.0047 0.0016 28.00 20.00 

 

Table 2.  Voltage Magnitude(pu) at each node for 69 Node Radial Distribution Network 
Node No. Voltage Magnitude (pu) 

CP CC CI Composite 

1 1.0000000 1.0000000 1.0000000 1.0000000 

2 0.9999965 0.9999965 0.9999965 0.9999896 

3 0.9999930 0.9999930 0.9999930 0.9999792 

4 0.9999897 0.9999897 0.9999897 0.9999692 

5 0.9999411 0.9999412 0.9999413 0.9998237 

6 0.9992353 0.9992377 0.9992401 0.9977137 

7 0.9985005 0.9985053 0.9985101 0.9955180 

8 0.9983229 0.9983283 0.9983336 0.9949873 

9 0.9982323 0.9982379 0.9982435 0.9947165 

10 0.9970182 0.9970289 0.9970395 0.9910919 

11 0.9967408 0.9967525 0.9967642 0.9902637 

12 0.9958422 0.9958573 0.9958723 0.9875807 

13 0.9948647 0.9948824 0.9948999 0.9846597 

14 0.9939756 0.9939952 0.9940147 0.9820022 

15 0.9930746 0.9930962 0.9931178 0.9793098 

16 0.9929106 0.9929323 0.9929538 0.9788188 

17 0.9926052 0.9926270 0.9926486 0.9779048 

18 0.9926033 0.9926244 0.9926452 0.9778969 

19 0.9925044 0.9925247 0.9925449 0.9775985 

20 0.9924531 0.9924725 0.9924917 0.9774421 

21 0.9923898 0.9924082 0.9924265 0.9772394 

22 0.9923936 0.9924107 0.9924277 0.9772367 

23 0.9923979 0.9924136 0.9924293 0.9772355 

24 0.9924477 0.9924620 0.9924762 0.9772356 

25 0.9931518 0.9931646 0.9931773 0.9772458 

26 0.9938853 0.9938963 0.9939073 0.9772559 

27 0.9940641 0.9940733 0.9940824 0.9772658 

28 0.9999920 0.9999920 0.9999920 0.9999760 

29 0.9999793 0.9999793 0.9999792 0.9999379 

30 0.9999524 0.9999525 0.9999525 0.9998575 

31 0.9999523 0.9999523 0.9999523 0.9998569 

32 0.9999523 0.9999523 0.9999523 0.9998569 

33 0.9999523 0.9999523 0.9999523 0.9998569 

34 0.9999522 0.9999523 0.9999523 0.9998569 

35 0.9999522 0.9999523 0.9999523 0.9998569 

36 0.9999895 0.9999895 0.9999895 0.9999685 

37 0.9999536 0.9999536 0.9999536 0.9998609 

38 0.9999215 0.9999215 0.9999216 0.9997648 

39 0.9999140 0.9999140 0.9999140 0.9997422 

40 0.9999136 0.9999136 0.9999137 0.9997411 

41 0.9998645 0.9998646 0.9998646 0.9995940 

42 0.9998638 0.9998638 0.9998638 0.9995917 

43 0.9998638 0.9998638 0.9998638 0.9995917 

44 0.9998638 0.9998638 0.9998638 0.9995917 

45 0.9998638 0.9998638 0.9998638 0.9995917 

46 0.9998638 0.9998638 0.9998638 0.9995917 

47 0.9999897 0.9999897 0.9999897 0.9999692 

48 0.9999897 0.9999897 0.9999897 0.9999692 

49 0.9999897 0.9999897 0.9999897 0.9999692 
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50 0.9999897 0.9999897 0.9999897 0.9999692 

51 0.9983230 0.9983283 0.9983336 0.9949873 

52 0.9983231 0.9983283 0.9983334 0.9949873 

53 0.9980842 0.9980900 0.9980958 0.9942732 

54 0.9979146 0.9979207 0.9979267 0.9937657 

55 0.9976824 0.9976889 0.9976953 0.9930711 

56 0.9975248 0.9975314 0.9975379 0.9925992 

57 0.9970405 0.9970475 0.9970545 0.9911489 

58 0.9968460 0.9968530 0.9968599 0.9905660 

59 0.9967859 0.9967926 0.9967994 0.9903852 

60 0.9967602 0.9967666 0.9967731 0.9903073 

61 0.9967593 0.9967654 0.9967714 0.9903035 

62 0.9967598 0.9967654 0.9967709 0.9903036 

63 0.9967603 0.9967654 0.9967704 0.9903036 

64 0.9967643 0.9967688 0.9967734 0.9903036 

65 0.9967682 0.9967723 0.9967763 0.9903036 

66 0.9967410 0.9967525 0.9967640 0.9902637 

67 0.9967413 0.9967525 0.9967637 0.9902637 

68 0.9958426 0.9958573 0.9958719 0.9875807 

69 0.9958430 0.9958573 0.9958715 0.9875807 

 

 


