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ABSTRACT - Cryptography is the technique of transforming an intelligible message into unintelligible format 

so that the message can’t be read or understood by an unauthorized person during its transmission over the 

public networks. A number of cryptographic techniques have been developed over the centuries. With 

technological advancement, new techniques have been evolved significantly. Public key cryptography offers a 

great security for transmitting data over the public networks such as Internet. The popular public key 

cryptosystems like RSA and Diffie- Hellman are becoming slowly disappearing because of requirement of large 

number of bits in the encryption and decryption keys. Elliptic Curve Cryptograph (ECC) is emerging as an 

alternative to the existing public key cryptosystems. This paper describes the idea of Elliptic Curve 

Cryptography (ECC) and its implementation through two dimensional (2D) geometry for data encryption and 

decryption. This paper discusses the implementation of ECC over prime field. Much attention has been given on 

the mathematics of elliptic curves starting from their derivations. 
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I. Introduction 

Elliptic Curve Cryptography (ECC) is completely a newer approach, and considered as an excellent 

technique in the history of cryptography. ECC was discovered in 1985 by Neil Koblitz and Victor Miller [4]. It 

is an asymmetric key cryptosystem. It is possible to generate public and private keys with elliptic curves. The 

existing popular cryptosystems like RSA [1] requires large length keys which increase the computational burden 

on the processor as a result of it, the cryptosystem becomes slow. Use of large size keys in RSA cryptosystem is 

essential in order to thwarts bruteforce attack [3]. The great feature of ECC is that with lower key size, it has a 

hard exponential time challenge for an opponent to break into the system [4] [5][6][7]. In ECC, a 160-bit key 

offers the same level of security as compared to the security offered by popular public key cryptosystem RSA 

[1] with a 1024-bit key and Diffie-Hellman crypto system [2]. Thus,  ECC provides great security with smaller 

key sizes reducing the computational overhead on the processor and resulting in faster encryption/decryption 

operations [5]. ECC is used to implement a variety of public key cryptosystems for encryption/decryption, key 

exchange and digital signature applications [7]. Elliptic curve cryptography uses complex mathematical 

operations and is not easy to understand like other pubic key cryptosystems [4] [5]. Hence, it is not easy to break 

the cryptosystem. The choice of elliptic curve is dependent on its domain parameters, the finite field, elliptic 

curve algorithms and as well as elliptic curve arithmetic [5]. The selection of these parameters decides the 

security of ECC. ECC makes use of elliptic curves defined over a finite field [6]. A finite field restricts the 

variable and coefficients to its elements. Elliptic Curves are not ellipses, and they are named because of the 

nature of equation that generates the elliptic curve appears to be same as ellipses. For cryptographic processes it 

is necessary that the elliptic curves be defined over a finite field, typically a prime finite field, so that the 

decryption process is carried out within the range of the elements. Otherwise, it will not be possible to apply the 

cryptographic process [6]. In this paper, we have focused on the derivations of the elliptical curves, operations 

on elliptic curves and how they are used in encryption and decryption applications. 

 

II. What is Elliptic Curve? 
An elliptic curve E, over a finite field R, of real numbers is defined by a cubic equation  

y
2 
+ a1xy + a3 y = x

3
 + a2x

2
 + a4x + a6  

Here a1, a2, a3, a4 and a6 are real numbers belong to R, x and y takes values from the finite field of real numbers. 

Two families of elliptic curves are widely used in cryptographic applications: Prime curves defined over ZP and 

binary curves defined over GF(2
m
) [7]. For a prime curve over ZP , we use a cubic equation in which the 

variables and the coefficients all take values from the set of integers from 0 through (p-1) and the calculations 

are performed with respect to modulo p. 
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In this paper, for the purpose of the encryption and decryption using elliptic curves, it is sufficient to consider 

the equation of the form  

y
2
 = x

3
 + ax + b (1) 

 

which is defined over a finite field of prime numbers ZP, where ‘p’ is a large prime number [4]. The variables x 

and y, the constants a and b takes the values from the finite field ZP. For the given values of a and b the plot 

consists of positive and negative values of y for each value of x. Thus, this curve is symmetric about the x-axis. 

For the polynomial,  

x
3
 + ax + b  

the discriminant can be given as  

 

D = - (4a
3
 + 27b

2
) (2) 

 

This discriminant must not become zero for an elliptic curve polynomial x
3
 + ax + b to possess three distinct 

roots [4]. If the discriminant is zero, that would imply that two or more roots have coalesced, giving the curves 

in singular form. It is not safe to use singular curves for cryptography as they are easy to crack. Due to this 

reason we generally take non-singular curves for data encryption [4].  

 

III. Elliptic Curve Arithmetic 
3.1 Group Laws of E(ZP) 

Let EP(a, b) be an elliptic curve defined over the ZP, there is a chord-and-tangent rule for adding two points in 

E(ZP), to give the third point. Together with this addition operation, the set of points of EP(a, b ) forms an 

abelian group with ∞ , the point at infinity O as identity elements [4][7]. 

 

3.2 Geometric Rules of Addition for Adding Two Points on An Elliptic Curve over ZP  
  

Let Zp be the set of finite integers, where p is a large prime number. In Fig. 1. Given two points P = (x1, y1) and 

Q = (x2, y2) on an elliptic curve E(a,b) defined over ZP, we have to compute the point P + Q. 

 
Fig.1. Elliptic Curve for y2 = x3 – x 

Draw a straight line through points P and Q on elliptic curve. Next, find the third intersection of the line with the 

elliptic curve and denote this point of intersection by R. Then, it can be evident that P + Q is equal to the mirror 

image of R about the x-axis. In other words, if points P, Q and -R are the three intersections of the straight line 

with the elliptic curve, then  

 

P + Q = - R                (3) 

 

The algebraic relationship between these three points of intersection can be examined as follows. The equation 

of the straight line that runs through two points P(x1, y1) and Q(x2, y2) is in the form of 

 

y = α x + β (mod p)          (4) 

 

where, α is the slope of the straight line and can be expressed as  

 

α = (y1 - y2) / (x1 - x2 ) (mod p)               
(5) 

 

For a point (x, y), to lie at the intersection of the straight line and the elliptic curve E(a,b), the following equality 

should hold 

 (6) 
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(α x + β)
2
 = x

3
 + ax + b (mod p)               

 

Since, y = α x + β (mod p) is the straight line through the points P and Q and the equation of the elliptic curve is 

y
2
 = x

3
 + ax + b  

 

for there to be three points of intersection between the straight line and the elliptic curve, the cubic form in 

equation (6) must have three roots. We have known two of these roots, since they must be x1 and x2, 

corresponding to the points P and Q respectively. Being a cubic equation, equation (6) has at most three roots 

and the remaining root x3 is the x-coordinate of the third point R. Further, equation (6) represents a monic 

polynomial in x. By the use of the property that sum of the roots of the monic polynomial must equal to the 

negative of the coefficient of the second highest power and expressing equation (6) with the rearrangements of 

terms as  
 

x
3
- α

2
x

2
 + (a - 2αβ)x + (b - β

2
) = 0                                 

(7) 

 

Then, we have 

x1 + x2 + x3 = α
2 

 

The x-coordinate of R is then given by 

 

x3 = α
2
 - x1 - x2 (mod p)                   (8) 

 

Since the point (x3, y3) must be on the straight line 

y = α x + β(mod p) 
 

we can write y3 as 

 

y3 = α x
3
 + β(mod p) (9) 

 

Since, the point (x1, y1) is also on the straight line 

y = α x + β(mod p) 
 

we can write y1 as 

 

y1 = α x1 + β (mod p)  

 

β=y1- α x1                  

 

(10) 
 

from equations (9) and (10), we can write y3 as 

 

y3 = α (x3-x1) + y1(mod p)                   
(11) 

 

Further, since the y-coordinate of the reflection -R is negative of the y-coordinate of the point R on the   

intersecting straight line, using the relation (3) we can write equation (11) as 

 

 

y3 = α (x1-x3) - y1 (mod p)                   
(12) 

 

We can summarize that ordinarily a straight line intersects an elliptical curve at three points and if the co-

ordinates of the first two points are known then the co-ordinates of the third point can easily be obtained from 

the equations (8) and (12). 

 

3.3 Doubling the point on the elliptic curve 

Let P(x1, y1) be the point on the elliptic curve E(a, b), here we need to calculate 2P. In order to calculate 2P, 

we draw the tangent at P(x1, y1) on elliptic curve E(a, b), the tangent intersects the EC at a point –R, which is the 

mirror image of point R (x3, y3) on EC about x-axis as shown in fig.2. 
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Fig.2. Elliptic Curve for y

2
 = x

3
 – x, (where 2P = -R) 

 

The slope of the tangent at a point (x1, y1) is obtained by differentiating both sides of the curve equation (2), that 

is  

 

2y1 (dy/dx) = 3x1
2
 + a 

 

Therefore, we can write the following expression for the slope of the tangent at point P: 

 

α =  (3x1
2
 + a )/ 2y1  (mod p)                     

(13) 

 

Since, the tangent at P is the limiting case of drawing a line through P and Q as Q approaches P, two of the three 

roots of the following equation 

(α x + β) 
2
 = x

3
 + ax + b (mod p) 

 

must coalesce into the same point, say x1 and the third root, say x3 that may be different. Consequently, as above 

we get 

 

x3 = α
2
 -2x1 (mod p) 

(14) 

 

Since, the point R must also lie on the straight line y = α x + β, it can be written as 

  
y3 = α x3 + β 

 
(15) 

Since, point P is also on the tangent (straight line) y = α x + β, it can be written as 

 

      y1= α x1 + β  

 

by rearranging the words, it can be written as 

 

β = y1 - α x1 
(16) 

   

Substituting equation (16) in equation (15) yields 

              y3= α x3 + (y1 - α x1) 

 

y3 = α (x3- x1 ) + y1 (17) 
  

If we take the condition 2P = -R, then we have 

 

y3 = α (x1- x3) - y1 (mod p) (18) 
  

Thus, for a given point P(x1, y1) on EC, its double or 2P can be obtained from equations (14) and (18). 

 

3.4 Multiplication of P(x, y) with an integer K on Elliptic Curve 

 

Let P(x, y) be any point on the elliptic curve E(a, b) defined over ZP. Then, the operation of multiplication of the 

point P with an integer K is defined as the repeated addition of P, K times i.e.  

 

K*P = P + P+………………..K times (19) 
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3.5 Negative of a point P(x, y) on Elliptic curve 

 

Let P(x, y) be any point on the elliptic curve E(a, b) defined over ZP. Then, the negative of the point P(x, y) is 

represented as –P(x, -y) which also lies on the EC. The sum of a point with its negative point is ∞ i.e. 

 

P+ (-P) = ∞ (20) 

 

3.6 Identity Element on Elliptic curve 

 

Let E(a, b) is an elliptic curve defined over ZP, P(x1, y1) and Q(x2, y2) be the points on elliptic curve, then, 

identity element O of elliptic curve E(a, b) is defined as  

 
Fig.3. Elliptic Curve for y2 = x3 + x+1 

 

(i) If x1 = x2 and y1 ≠y2, then P + Q = O 

(ii) If P = Q and y1= 0, then P + Q = O 

 

IV. Encryption and Decryption using elliptic curves 
Elliptic curves are widely used in implementing variety of public key cryptosystems including 

encryption/decryption, key exchange and digital signature cryptosystems. The section 4.1 focuses on the 

encryption process and section 4.2 focuses on decryption process. 

 

4.1. Encryption using Elliptic curves 

In ECC, we start with a Base Point (BP) and an affine point AP (x, y). A Base Point is the smallest co-

ordinate on the elliptic curve, satisfying the elliptic curve equation. An affine point AP may or may not be the 

Base Point, if it is not base point it should be close to the base point BP.  

 

To perform encryption, take first character from plain text, find out the  ASCII code of that character and use it 

as an integer. Multiply pre-selected affine point (AP) with the integer (ASCII code of the character) that gives  

another affine point on the EC, thus, plain text character is converted into another affine point (ciphet text) on  

EC. That is, assume that the ASCII value of some plain text character is p, AP is an affine point on elliptic curve 

E(a, b), then we need to determine APL as follows 

 

APL= p*AP (21) 

 

Where,  the newly calculated APL is another affine point on EC. The multiplication is achieved by applying 

repeated addition strategies of ECC techniques. Then as per ECC algorithm, we have to add the newly obtained 

point APL to k*PUB, where k is a randomly generated large secret integer and PUB is the public key of receiver 

(User B). The addition yields another affine point (APL+ k*PUB) of the EC. This is the second part of the 

encrypted message to be sent. The first part constitutes the product of secret integer k and Base Point BP, i.e. 

k*BP. Thus, the encrypted message to be sent to the receiver is  

 

(k*BP, APL+k*PUB) (22) 

 

These are two sets of co-ordinates on the EC which are considered to the cipher characters for first plain text 

character. This process is repeated for each plain text character and a pair of cipher text characters are generated 

for each plain text character and they are transmitted to the destination. 
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4.2. Decryption using Elliptic curves 

To perform decryption, the receiver applies its private key, PRB, on the first part of the  points received 

from the source i.e. first part of quation (22) , i.e., k*BP 

 

k*BP*PRB (23) 
 

Since,  

 

PUB=BP * PRB, (24) 
 

the equation (23) becomes   

 

k* PUB (25) 
 

Now, by subtracting the equation (25) from the second part of the received message (second part of equation 

22), which gives the APL.  

 

Once APL is obtained, from equation (21), it is possible retrieve the ASCII value stored in the affine point. From 

this ASCII value, the plain text character can be obtained. 

 

V. Strength of ECC 
The security due to ECC relies on the difficulty of Elliptic Curve Discrete Logarithm Problem 

(ECDLP). Let P and Q be two points on an elliptic curve such that k*P = Q, where k is a scalar. Given P and k, 

it is computationally easy to calculate the point Q on elliptic curve. But, given P and Q, it is computationally 

difficult to calculate the value of k. If k is sufficiently large, it becomes infeasible to calculate k. k is called the 

discrete logarithm of Q to the base P. Hence, the main operation involved in ECC is computation of product of 

an integer with a point on EC  i.e. multiplication of a scalar k with any point P on the EC to obtain another point 

Q on the EC. 

 

VI. Conclusion 
In this paper, we have provided a detailed overview of elliptic curve cryptography along with the 

derivation of equations over the finite prime field. The strength of the ECC has been discussed in comparison 

with popular public key cryptosystems.  A method of encryption and decryption using ECC has also been 

discussed. Moreover, ECC can be used to develop varieties of public key cryptosystems. Today, ECC 

algorithms have been in use in many real time applications such as Secures Socket Layers and E-Commerce 

applications. Even, the low cost chip implementation of ECC algorithms have been developed and slowly they 

started embedding in the commercial security products. It is expected that soon the ECC is will replace all 

popular public key cryptosystems such as RSA and Diffie-Hellman cryptosystems. 
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