Higher Separation Axioms via Semi*-open sets

S. Pious Missier¹, A. Robert²

¹ Department of Mathematics, V.O.Chidambaram College, Thoothukudi, India-628008.
²Department of Mathematics, Aditanar College, Tiruchendur, India-628216.

Abstract: The purpose of this paper is to introduce new separation axioms semi*-regular, semi*-normal, s*-regular, s**-normal using semi*-open sets and investigate their properties. We also study the relationships among themselves and with known axioms regular, normal, semi-regular and semi-normal.

Mathematics Subject Classification 2010: 54D10, 54D15

Keywords and phrases: s**-normal, s*-regular, semi*-normal, semi*-regular.

I. INTRODUCTION

Separation axioms are useful in classifying topological spaces. Maheswari and Prasad [8, 9] introduced the notion of s-regular and s-normal spaces using semi-open sets. Dorsett [3, 4] introduced the concept of semi-regular and semi-normal spaces and investigate their properties.

In this paper, we define semi*-regular, semi*-normal, s*-regular and s**-normal spaces using semi*-open sets and investigate their basic properties. We further study the relationships among themselves and with known axioms regular, normal, semi-regular and semi-normal.

II. PRELIMINARIES

Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X, τ), Cl(A) and Int(A) respectively denote the closure and the interior of A in X.

Definition 2.1[7]: A subset A of a topological space (X, τ) is called
(i) generalized closed (briefly g-closed) if Cl(A) ⊆ U whenever A ⊆ U and U is open in X.
(ii) generalized open (briefly g-open) if X \ A is g-closed in X.

Definition 2.2: Let A be a subset of X. Then
(i) generalized closure[5] of A is defined as the intersection of all g-closed sets containing A and is denoted by Cl*(A).
(ii) generalized interior of A is defined as the union of all g-open subsets of A and is denoted by Int*(A).

Definition 2.3: A subset A of a topological space (X, τ) is called
(i) semi-open [6] (resp. semi*-open[12]) if A ⊆ Cl(Int(A)) (resp. A ⊆ Cl*(Int(A)).

The class of all semi*-open (resp. semi*-closed) sets is denoted by S*O(X, τ) (resp. S*C(X,τ)).

The semi*-interior of A is defined as the union of all semi*-open sets of X contained in A. It is denoted by s*Int(A). The semi*-closure of A is defined as the intersection of all semi*-closed sets in X containing A. It is denoted by s*Cl(A).

Theorem 2.4[13]: Let A⊆X and let x∈X. Then x∈s*Cl(A) if and only if every semi*-open set in X containing x intersects A.
Theorem 2.5[12]:
(i) Every open set is semi*-open.
(ii) Every semi*-open set is semi-open.

Definition 2.6: A space X is said to be $T_i[17]$ if for every pair of distinct points x and y in X, there is an open set U containing x but not y and an open set V containing y but not x.

Definition 2.7: A space X is R_0 [16] if every open set contains the closure of each of its points.

Theorem 2.8:
(i) X is R_0, if and only if for every closed set F, $Cl({x})\cap F=\emptyset$, for all $x\in X\setminus F$.
(ii) X is semi*-R$_0$ if and only if for every semi*-closed set F, $s^*Cl({x})\cap F=\emptyset$, for all $x\in X\setminus F$.

Definition 2.9: A topological space X is said to be
(i) regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint open sets U and V in X containing x and B respectively.[17]
(ii) s-regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint semi-open sets U and V in X containing x and B respectively.[8]
(iii) semi-regular if for every pair consisting of a point x and a semi-closed set B not containing x, there are disjoint semi-open sets U and V in X containing x and B respectively.[3]

Definition 2.10: A topological space X is said to be
(i) normal if for every pair of disjoint closed sets A and B in X, there are disjoint open sets U and V in X containing A and B respectively.[17]
(ii) s-normal if for every pair of disjoint closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.[9]
(iii) semi-normal if for every pair of disjoint semi-closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.[4]

Definition 2.11: A function $f:X\rightarrow Y$ is said to be
(i) closed [17] if $f(V)$ is closed in Y for every closed set V in X.
(ii) semi*-continuous [14] if $f^{-1}(V)$ is semi*-open in X for every open set V in Y.
(iii) semi*-irresolute [15] if $f^{-1}(V)$ is semi*-open in X for every semi*-open set V in Y.
(iv) contra-semi*-irresolute [15] if $f^{-1}(V)$ is semi*-closed in X for every semi*-open set V in Y.
(v) semi*-open [14] if $f(V)$ is semi*-open in Y for every open set V in X.
(vi) pre-semi*-open [14] if $f(V)$ is semi*-open in Y for every semi*-open set V in X.
(vii) contra-pre-semi*-open [14] if $f(V)$ is semi*-closed in Y for every semi*-open set V in X.
(viii) pre-semi*-closed [14] if $f(V)$ is semi*-closed in Y for every semi*-closed set V in X.

Lemma 2.12[10]: If A and B are subsets of X such that $A\cap B=\emptyset$ and A is semi*-open in X, then $A\cap x^*Cl(B)=\emptyset$.

Theorem 2.13[15]: A function $f:X\rightarrow Y$ is semi*-irresolute if $f^{-1}(F)$ is semi*-closed in X for every semi*-closed set F in Y.

III. REGULAR SPACES ASSOCIATED WITH SEMI*-OPEN SETS.

In this section we introduce the concepts of semi*-regular and s*-regular spaces. Also we investigate their basic properties and study their relationship with already existing concepts.

Definition 3.1: A space X is said to be semi*-regular if for every pair consisting of a point x and a semi*-closed set B not containing x, there are disjoint semi*-open sets U and V in X containing x and B respectively.
Theorem 3.2: In a topological space X, the following are equivalent:

(i) X is semi*-regular.
(ii) For every \(x \in X \) and every semi*-open set U containing x, there exists a semi*-open set V containing x such that \(s^*\text{Cl}(V) \subseteq U \).
(iii) For every set A and a semi*-open set B such that \(A \cap B \neq \emptyset \), there exists a semi*-open set \(U \) such that \(A \cap U \neq \emptyset \) and \(s^*\text{Cl}(U) \subseteq B \).
(iv) For every non-empty set A and semi*-closed set B such that \(A \cap B = \emptyset \), there exist disjoint semi*-open sets U and V such that \(A \cap U \neq \emptyset \) and \(B \subseteq V \).

Proof: (i)⇒(ii): Let U be a semi*-open set containing x. Then \(B= XuU \) is a semi*-*closed not containing x. Since X is semi*-regular, there exist disjoint semi*-open sets V and W containing x and B respectively. If \(y \notin B \), W is a semi*-open set containing y that does not intersect V and hence by Theorem 2.4, y cannot belong to \(s^*\text{Cl}(V) \). Therefore \(s^*\text{Cl}(V) \subseteq U \).

(ii)⇒(iii): Let \(A \cap B \neq \emptyset \) and B be semi*-open. Let \(x \in A \cap B \). Then by assumption, there exists a semi*-open set U containing x such that \(s^*\text{Cl}(U) \subseteq B \). Since \(x \in A \), \(A \cap U \neq \emptyset \). This proves (iii).

(iii)⇒(iv): Suppose \(A \cap B = \emptyset \), where A is non-empty and B is semi*-closed. Then \(X \setminus B \) is semi*-open and \(A \cap (X \setminus B) = \emptyset \). By (iii), there exists a semi*-open set \(U \) such that \(A \cap U \neq \emptyset \) and \(U \subseteq s^*\text{Cl}(U) \setminus X \setminus B \). Put \(V = X \setminus s^*\text{Cl}(U) \). Hence \(V \) is a semi*-open set containing B such that \(U \cap V = U \cap (X \setminus s^*\text{Cl}(U)) \subseteq U \cap (X \setminus U) = \emptyset \). This proves (iv).

(iv)⇒(i): Let B be semi*-closed and \(x \notin B \). Take \(A = \{ x \} \). Then \(A \cap B = \emptyset \). By (iv), there exist disjoint semi*-open sets U and V such that \(U \cap A \neq \emptyset \) and \(B \subseteq V \). Since \(U \cap A \neq \emptyset \), \(x \in U \). This proves that X is semi*-regular.

Theorem 3.3: Let X be a semi*-regular space.

(i) Every semi*-open set in X is a union of semi*-closed sets.
(ii) Every semi*-closed set in X is an intersection of semi*-open sets.

Proof: (i) Suppose X is s*-regular. Let \(G \) be a semi*-open set and \(x \in G \). Then \(F=XuG \) is semi*-closed and \(x \notin F \). Since X is semi*-regular, there exist disjoint semi*-open sets \(U_x \) and \(V \) in X such that \(x \in U_x \) and \(F \subseteq V \). Since \(U_x \cap F \subseteq U_x \cap V = \emptyset \), we have \(U_x \subseteq XF = G \). Take \(V_x = s^*\text{Cl}(U_x) \). Then \(V_x \) is semi*-closed and by Lemma 2.12, \(V_x \cap V = \emptyset \). Now \(F \subseteq V \) implies that \(V_x \cap F \subseteq V_x \cap V = \emptyset \). It follows that \(x \in V_x \subseteq XF = G \). This proves that \(G = \bigcup \{ V_x : x \in G \} \). Thus G is a union of semi*-closed sets.

(ii) Follows from (i) and set theoretic properties.

Theorem 3.4: If \(f \) is a semi*-irresolute and pre-semi*-closed injection of a topological space X into a semi*-regular space Y, then X is semi*-regular.

Proof: Let \(x \in X \) and \(A \) be a semi*-closed set in X not containing x. Since \(f \) is pre-semi*-closed, \(f(A) = f(\{ x \}) \) is a semi*-closed set in Y not containing \(f(x) \). Since Y is semi*-regular, there exist disjoint semi*-open sets \(V_1 \) and \(V_2 \) in Y such that \(f(x) \in V_1 \) and \(f(A) \subseteq V_2 \). Since \(f \) is semi*-irresolute, \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are disjoint semi*-open sets in X containing x and A respectively. Hence X is semi*-regular.

Theorem 3.5: If \(f \) is a semi*-continuous and closed injection of a topological space X into a regular space Y and if every semi*-closed set in X is closed, then X is semi*-regular.
Proof: Let \(x \in X \) and \(A \) be a semi*-closed set in \(X \) not containing \(x \). Then by assumption, \(A \) is closed in \(X \). Since \(f \) is closed, \(f(A) \) is a closed set in \(Y \) not containing \(f(x) \). Since \(Y \) is regular, there exist disjoint open sets \(V_1 \) and \(V_2 \) in \(Y \) such that \(f(x) \in V_1 \) and \(f(A) \subseteq V_2 \). Since \(f \) is semi*-continuous, \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are disjoint semi*-open sets in \(X \) containing \(x \) and \(A \) respectively. Hence \(X \) is semi*-regular.

Theorem 3.6: If \(f : X \rightarrow Y \) is a semi*-irresolute bijection which is pre-semi*-open and \(X \) is semi*-regular. Then \(Y \) is also semi*-regular.

Proof: Let \(f : X \rightarrow Y \) be a semi*-irresolute bijection which is semi*-open and \(X \) be semi*-regular. Let \(y \in Y \) and \(B \) be a semi*-closed set in \(Y \) not containing \(y \). Since \(f \) is semi*-irresolute, by Theorem 2.13 \(f^{-1}(B) \) is a semi*-closed set in \(X \) not containing \(f^{-1}(y) \). Since \(X \) is semi*-regular, there exist disjoint semi*-open sets \(U_1 \) and \(U_2 \) containing \(f^{-1}(y) \) and \(f^{-1}(B) \) respectively. Since \(f \) is pre-semi*-open, \(f(U_1) \) and \(f(U_2) \) are disjoint semi*-open sets in \(Y \) containing \(y \) and \(B \) respectively. Hence \(Y \) is semi*-regular.

Theorem 3.7: If \(f \) is a continuous semi*-open bijection of a regular space \(X \) into a space \(Y \) and if every semi*-closed set in \(Y \) is closed, then \(Y \) is semi*-regular.

Proof: Let \(y \in Y \) and \(B \) be a semi*-closed set in \(Y \) not containing \(y \). Then by assumption, \(B \) is closed in \(Y \). Since \(f \) is a continuous bijection, \(f^{-1}(B) \) is a closed set in \(X \) not containing the point \(f^{-1}(y) \). Since \(X \) is regular, there exist disjoint open sets \(U_1 \) and \(U_2 \) in \(X \) such that \(f^{-1}(y) \in U_1 \) and \(f^{-1}(B) \subseteq U_2 \). Since \(f \) is semi*-open, \(f(U_1) \) and \(f(U_2) \) are disjoint semi*-open sets in \(Y \) containing \(y \) and \(B \) respectively. Hence \(Y \) is semi*-regular.

Theorem 3.8: If \(X \) is semi*-regular, then it is semi-R_0.

Proof: Suppose \(X \) is semi*-regular. Let \(U \) be a semi*-open set and \(x \in U \). Take \(F = X \setminus U \). Then \(F \) is a semi*-closed set not containing \(x \). By semi*-regularity of \(X \), there are disjoint semi*-open sets \(V \) and \(W \) such that \(x \in V \), \(F \subseteq W \). If \(y \in F \), then \(W \) is a semi*-open set containing \(y \) that does not intersect \(V \). Therefore \(y \notin s^*Cl(\{x\}) \Rightarrow y \notin s^*Cl(\{x\}) \cap V = \emptyset \) and hence \(s^*Cl(\{x\}) \subseteq X \setminus F = U \). Hence \(X \) is semi-R_0.

Definition 3.9: A space \(X \) is said to be \(s^*-\text{regular} \) if for every pair consisting of a point \(x \) and a closed set \(B \) not containing \(x \), there are disjoint semi*-open sets \(U \) and \(V \) in \(X \) containing \(x \) and \(B \) respectively.

Theorem 3.10: (i) Every regular space is \(s^*-\text{regular} \).
(ii) Every \(s^*-\text{regular} \) space is \(s\)-regular.

Proof: Suppose \(X \) is regular. Let \(F \) be a closed set and \(x \notin F \). Since \(X \) is regular, there exist disjoint open sets \(U \) and \(V \) containing \(x \) and \(F \) respectively. Then by Theorem 2.5(i) \(U \) and \(V \) are semi*-open in \(X \). This implies that \(X \) is \(s^*-\text{regular} \). This proves (i).

Suppose \(X \) is \(s^*-\text{regular} \). Let \(F \) be a closed set and \(x \notin F \). Since \(X \) is \(s^*-\text{regular} \), there exist disjoint semi*-open sets \(U \) and \(V \) containing \(x \) and \(F \) respectively. Then by Theorem 2.5(ii) \(U \) and \(V \) are semi-open in \(X \). This implies that \(X \) is \(s\)-regular. This proves (ii).

Remark 3.11: The reverse implications of the statements in the above theorem are not true as shown in the following examples.

Example 3.12: Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\} \). Clearly \((X, \tau)\) is \(s^*-\text{regular} \) but not regular.

Example 3.13: Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\} \). Clearly \((X, \tau)\) is \(s\)-regular but not \(s^*-\text{regular} \).

Theorem 3.14: For a topological space \(X \), the following are equivalent:
(i) X is s^*-regular.
(ii) For every $x \in X$ and every open set U containing x, there exists a s^*-open set V containing x such that $s^*\text{Cl}(V) \subseteq U$.
(iii) For every set A and an open set B such that $A \cap B \neq \emptyset$, there exists a s^*-open set U such that $A \cap U \neq \emptyset$ and $s^*\text{Cl}(U) \subseteq B$.
(iv) For every non-empty set A and closed set B such that $A \cap B = \emptyset$, there exist disjoint s^*-open sets U and V such that $A \cap U \neq \emptyset$ and $B \subseteq V$.

Proof: (i)\Rightarrow(ii): Let U be an open set containing x. Then $B = X \setminus U$ is a closed set not containing x. Since X is s^*-regular, there exist disjoint s^*-open sets V and W containing x and B respectively. If $y \in B$, W is a s^*-open set containing y that does not intersect V and hence by Theorem 3.1, y cannot belong to $s^*\text{Cl}(V)$. Therefore $s^*\text{Cl}(V)$ is disjoint from B. Hence $s^*\text{Cl}(V) \subseteq U$.
(ii)\Rightarrow(iii): Let $A \cap B \neq \emptyset$ and B be open. Let $x \in A \cap B$. Then by assumption, there exists a s^*-open set U containing x such that $s^*\text{Cl}(U) \subseteq B$. Since $x \in A$, $A \cap U \neq \emptyset$. This proves (iii).
(iii)\Rightarrow(iv): Suppose $A \cap B = \emptyset$, where A is non-empty and B is closed. Then $X \setminus B$ is open and $A \cap (X \setminus B) \neq \emptyset$. By (iii), there exists a s^*-open set U such that $A \cap U \neq \emptyset$, and $U \subseteq s^*\text{Cl}(U) \subseteq X \setminus B$. Put $V = X \setminus s^*\text{Cl}(U)$. Hence V is a s^*-open set containing B such that $U \cap V = U \cap (X \setminus s^*\text{Cl}(U)) \subseteq U \cap \emptyset = \emptyset$. This proves (iv).
(iv)\Rightarrow(i): Let B be closed and $x \notin B$. Take $A = \{x\}$. Then $A \cap B = \emptyset$. By (iv), there exist disjoint s^*-open sets U and V such that $U \cap A \neq \emptyset$ and $B \subseteq V$. Since $U \cap A \neq \emptyset$, $x \in U$. This proves that X is s^*-regular.

Theorem 3.15: If X is a regular T_1 space, then for every pair of distinct points of X there exist s^*-open sets containing them whose s^*-closures are disjoint.

Proof: Let x, y be two distinct points in the regular T_1 space X. Since X is T_1, $\{y\}$ is closed. Since X is regular, there exist disjoint open sets U_1 and U_2 containing x and $\{y\}$ respectively. By Theorem 3.9(i), X is s^*-regular and hence by Theorem 3.13, there exist s^*-open sets V_1 and V_2 containing x, y such that $s^*\text{Cl}(V_1) \subseteq U_1$ and $s^*\text{Cl}(V_2) \subseteq U_2$. Since U_1 and U_2 are disjoint, $s^*\text{Cl}(V_1)$ and $s^*\text{Cl}(V_2)$ are disjoint. This proves the theorem.

Theorem 3.16: Every s^*-regular space is s^*-regular.

Proof: Suppose X is semi**-regular. Let F be a closed set and $x \in F$. Then by Theorem (i), F is semi*-closed in X. Since X is semi**-regular, there exist disjoint semi**-open sets U and V containing x and F respectively. This implies that X is s^*-regular.

Theorem 3.17: (i) Every s^*-regular T_1 space is semi**-T_2.
(ii) Every semi**-regular semi**-T_1 space is semi**-T_2.

Proof: Suppose X is s^*-regular and T_1. Let x and y be two distinct points in X. Since X is T_1, $\{x\}$ is closed and $y \notin \{x\}$. Since X is s^*-regular, there exist disjoint s^*-open sets U and V in X containing $\{x\}$ and y respectively. It follows that X is semi**-T_2. This proves (i).
Suppose X is semi**-regular and semi**-T_1. Let x and y be two distinct points in X. Since X is semi**-T_1, $\{x\}$ is semi*-closed and $y \notin \{x\}$. Since X is semi**-regular, there exist disjoint semi*-open sets U and V in X containing $\{x\}$ and y respectively. It follows that X is semi**-T_2. This proves (ii).

Theorem 3.18: Let X be an s^*-regular space.

i) Every open set in X is a union of semi*-closed sets.
Every closed set in X is an intersection of semi-open sets.

Proof: (i) Suppose X is s-regular. Let G be an open set and $x \in G$. Then $F=X\setminus G$ is closed and $x \notin F$. Since X is s-regular, there exist disjoint semi-open sets U_x and U in X such that $x \in U_x$ and $F \subseteq U$. Since $U_x \cap F \subseteq U_x \cap U = \emptyset$, we have $U_x \subseteq X \setminus F = G$. Take $V_x = s^*\text{Cl}(U_x)$. Then V_x is semi-closed. Now $F \subseteq U$ implies that $V_x \cap F \subseteq V_x \cap U = \emptyset$. It follows that $x \in V_x \subseteq X \setminus F = G$. This proves that $G = \bigcup \{ V_x : x \in G \}$. Thus G is a union of semi-closed sets.

(ii) Follows from (i) and set theoretic properties.

IV. NORMAL SPACES ASSOCIATED WITH SEMI*-OPEN SETS.

In this section we introduce variants of normal spaces namely semi-normal spaces and s^*-normal spaces and investigate their basic properties. We also give characterizations for these spaces.

Definition 4.1: A space X is said to be **semi-normal** if for every pair of disjoint semi-closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.

Theorem 4.2: In a topological space X, the following are equivalent:

(i) X is semi-normal.

(ii) For every semi-closed set A in X and every semi-open set U containing A, there exists a semi-open set V containing A such that $s^*\text{Cl}(V) \subseteq U$.

(iii) For each pair of disjoint semi-closed sets A and B in X, there exists a semi-open set U containing A such that $s^*\text{Cl}(U) \cap B = \emptyset$.

(iv) For each pair of disjoint semi-closed sets A and B in X, there exist semi-open sets U and V containing A and B respectively such that $s^*\text{Cl}(U) \cap s^*\text{Cl}(V) = \emptyset$.

Proof:

(i)\Rightarrow(ii): Let U be a semi-open set containing the semi-closed set A. Then $B=X\setminus U$ is a semi-closed set disjoint from A. Since X is semi-normal, there exist disjoint semi-open sets V and W containing A and B respectively. Then $s^*\text{Cl}(V)$ is disjoint from B, since if $y \in B$, the set W is a semi-open set containing y disjoint from V. Hence $s^*\text{Cl}(V) \subseteq U$.

(ii)\Rightarrow(iii): Let A and B be disjoint semi-closed sets in X. Then $X \setminus B$ is a semi-open set containing A. By (ii), there exists a semi-open set U containing A such that $s^*\text{Cl}(U) \subseteq X \setminus B$. Hence $s^*\text{Cl}(U) \cap B = \emptyset$. This proves (iii).

(iii)\Rightarrow(iv): Let A and B be disjoint semi-closed sets in X. Then, by (iii), there exists a semi-open set U containing A such that $s^*\text{Cl}(U) \cap B = \emptyset$. Since $s^*\text{Cl}(U)$ is semi-closed, B and $s^*\text{Cl}(U)$ are disjoint semi-closed sets in X. Again by (iii), there exists a semi-open set V containing B such that $s^*\text{Cl}(U) \cap s^*\text{Cl}(V) = \emptyset$. This proves (iv).

(iv)\Rightarrow(i): Let A and B be the disjoint semi-closed sets in X. By (iv), there exist semi-open sets U and V containing A and B respectively such that $s^*\text{Cl}(U) \cap s^*\text{Cl}(V) = \emptyset$. Since $U \cap V \subseteq s^*\text{Cl}(U) \cap s^*\text{Cl}(V)$, U and V are disjoint semi-open sets containing A and B respectively. Thus X is semi-normal.

Theorem 4.3: For a space X, the following are equivalent:

(i) X is semi-normal.

(ii) For any two semi-open sets U and V whose union is X, there exist semi-closed subsets A of U and B of V whose union is also X.
Proof: (i)⇒(ii): Let U and V be two semi*-open sets in a semi*-normal space X such that X=U∪V. Then X∪, X∪V are disjoint semi*-closed sets. Since X is semi*-normal, there exist disjoint semi*-open sets G₁ and G₂ such that X∪₁∪₁ograms and X∪V₁∪₂ emphas. Let A=X∪₁ and B=X∪₂. Then A and B are semi*-closed subsets of U and V respectively such that A∪B=X. This proves (ii).

(ii)⇒(i): Let A and B be disjoint semi*-closed sets in X. Then X\A and X\B are semi*-open sets whose union is X. By (ii), there exists semi*-closed sets F₁ and F₂ such that F₁⊆X\A, F₂⊆X\B and F₁∪F₂=X. Then X\F₁ and X\F₂ are disjoint semi*-open sets containing A and B respectively. Therefore X is semi*-normal.

Definition 4.4: A space X is said to be s**-normal if for every pair of disjoint closed sets A and B in X, there are disjoint semi*-open sets U and V in X containing A and B respectively.

Theorem 4.5: (i) Every normal space is s**-normal.
(ii) Every s**-normal space is s-normal.
(iii) Every semi*-normal space is s**-normal.

Proof: Suppose X is normal. Let A and B be disjoint closed sets in X. Since X is normal, there exist disjoint open sets U and V containing A and B respectively. Then by Theorem 2.5(i), U and V are semi*-open in X. This implies that X is s**-normal. This proves (i).

Suppose X is s**-normal. Let A and B be disjoint closed sets in X. Since X is s**-normal, there exist disjoint semi*-open sets U and V containing A and B respectively. Then by Theorem 2.5(ii), U and V are semi-open in X. This implies that X is s-normal. This proves (ii).

Suppose X is semi*-regular. Let A and B be disjoint closed sets in X. Then by Theorem 2.5(i), A and B are disjoint semi*-closed sets in X. Since X is semi*-regular, there exist disjoint semi*-open sets U and V containing A and B respectively. Therefore X is s**-normal. This proves (iii).

Theorem 4.6: In a topological space X, the following are equivalent:
(i) X is s**-normal.
(ii) For every closed set F in X and every open set U containing F, there exists a semi*-open set V containing F such that s*Cl(V)⊆U.
(iii) For each pair of disjoint closed sets A and B in X, there exists a semi*-open set U containing A such that s*Cl(U)∩B=∅.

Proof: (i)⇒(ii): Let U be a open set containing the closed set F. Then H=X\U is a closed set disjoint from F. Since X is s**-normal, there exist disjoint semi*-open sets V and W containing F and H respectively. Then s*Cl(V) is disjoint from H, since if y∈H, the set W is a semi*-open set containing y disjoint from V. Hence s*Cl(V)⊆U.

(ii)⇒(iii): Let A and B be disjoint closed sets in X. Then X\B is an open set containing A. By (ii), there exists a semi*-open set U containing A such that s*Cl(U)⊆ X\B. Hence s*Cl(U)∩B=∅. This proves (iii).

(iii)⇒(i): Let A and B be the disjoint semi*-closed sets in X. By (iii), there exists a semi*-open set U containing A such that s*Cl(U)∩B=∅. Take V=X\s*Cl(U). Then U and V are disjoint semi*-open sets containing A and B respectively. Thus X is s**-normal.

Theorem 4.7: For a space X, then the following are equivalent:
(i) X is s**-normal.
(ii) For any two open sets U and V whose union is X, there exist semi*-closed subsets A of U and B of V whose union is also X.

Proof: (i)⇒(ii): Let U and V be two open sets in an s^{**}-normal space X such that $X=U \cup V$. Then $X \setminus U$, $X \setminus V$ are disjoint closed sets. Since X is s^{**}-normal, there exist disjoint semi*-open sets G_1 and G_2 such that $X \setminus U \subseteq G_1$ and $X \setminus V \subseteq G_2$. Let $A=X \cap G_1$ and $B=X \cap G_2$. Then A and B are semi*-closed subsets of U and V respectively such that $A \cup B=X$. This proves (ii).

(ii)⇒(i): Let A and B be disjoint closed sets in X. Then $X \setminus A$ and $X \setminus B$ are open sets whose union is X. By (ii), there exists semi*-closed sets F_1 and F_2 such that $F_1 \subseteq X \setminus A$, $F_2 \subseteq X \setminus B$ and $F_1 \cup F_2=X$. Then $X \setminus F_1$ and $X \setminus F_2$ are disjoint semi*-open sets containing A and B respectively. Therefore X is s^{**}-normal.

Remark 4.8: It is not always true that an s^{**}-normal space X is s^*-regular as shown in the following example. However it is true if X is R_0 as seen in Theorem 4.10.

Example 4.9: Let $X=\{a, b, c, d\}$ with topology $\tau=\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Clearly (X, τ) is s^{**}-normal but not s^*-regular.

Theorem 4.10: Every s^{**}-normal R_0 space is s^*-regular.

Proof: Suppose X is s^{**}-normal and R_0. Let F be a closed set and $x \notin F$. Since X is R_0, by Theorem 2.8(i), $Cl(\{x\}) \cap F = \emptyset$. Since X is s^{**}-normal, there exist disjoint semi*-open sets U and V in X containing $Cl(\{x\})$ and F respectively. It follows that X is s^*-regular.

Corollary 4.11: Every s^{**}-normal T_1 space is s^*-regular.

Proof: Follows from the fact that every T_1 space is R_0 and Theorem 4.10.

Theorem 4.12: If f is an injective and semi*-irresolute and pre-semi*-closed mapping of a topological space X into a semi*-normal space Y, then X is semi*-normal.

Proof: Let f be an injective and semi*-irresolute and pre-semi*-closed mapping of a topological space X into a semi*-normal space Y. Let A and B be disjoint semi*-closed sets in X. Since f is a pre-semi*-closed function, $f(A)$ and $f(B)$ are disjoint semi*-closed sets in Y. Since Y is semi*-normal, there exist disjoint semi*-open sets V_1 and V_2 in Y containing $f(A)$ and $f(B)$ respectively. Since f is semi*-irresolute, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint semi*-open sets in X containing A and B respectively. Hence X is semi*-normal.

Theorem 4.13: If f is an injective and semi*-continuous and closed mapping of a topological space X into a normal space Y and if every semi*-closed set in X is closed, then X is semi*-normal.

Proof: Let A and B be disjoint semi*-closed sets in X. By assumption, A and B are closed in X. Then $f(A)$ and $f(B)$ are disjoint closed sets in Y. Since Y is normal, there exist disjoint open sets V_1 and V_2 in Y such that $f(A) \subseteq V_1$ and $f(B) \subseteq V_2$. Then $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint semi*-open sets in X containing A and B respectively. Hence X is semi*-normal.

Theorem 4.14: If $f:X \to Y$ is a semi*-irresolute injection which is pre-semi*-open and X is semi*-normal, then Y is also semi*-normal.

Proof: Let $f:X \to Y$ be a semi*-irresolute surjection which is semi*-open and X be semi*-normal. Let A and B be disjoint semi*-closed sets in Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint semi*-closed sets in X. Since X is semi*-normal, there exist disjoint semi*-open sets U_1 and U_2 containing $f^{-1}(A)$ and $f^{-1}(B)$ respectively. Since f is pre-semi*-open, $f(U_1)$ and $f(U_2)$ are disjoint semi*-open sets in Y containing A and B respectively. Hence Y is semi*-normal.
Remark 4.15: It is not always true that a semi*-normal space X is semi*-regular as shown in the following example. However it is true if X is semi*-R$_0$ as seen in Theorem 4.17.

Example 4.16: Let $X=\{a, b, c, d\}$ with topology $\tau=\{\emptyset, \{a, b\}, X\}$. Clearly (X, τ) is semi*-normal but not semi*-regular.

Theorem 4.17: Every semi*-normal space that is semi*-R$_0$ is semi*-regular.

Proof: Suppose X is semi*-normal that is semi*-R$_0$. Let F be a semi*-closed set and $x \notin F$. Since X is semi*-R$_0$, by Theorem 2.8(ii), $s^*\text{Cl}(\{x\}) \cap F = \emptyset$. Since X is semi*-normal, there exist disjoint semi*-open sets U and V in X containing $s^*\text{Cl}(\{x\})$ and F respectively. It follows that X is semi*-regular.

Corollary 4.18: Every semi*-normal semi*-T$_1$ space is semi*-regular.

Proof: Follows from the fact that every semi*-T$_1$ space is semi*-R$_0$ and Theorem 4.13.

REFERENCES