
Research Inventy: International Journal Of Engineering And Science

Vol.3, Issue 9 (September 2013), PP 01-11

Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com

1

Exploiting Dynamic Resource Allocation for Efficient Parallel

Data Processing In The Cloud

1
Sampat Peddi,

2
Prof. Afroze Ansari

ABSTRACT: In recent years ad-hoc parallel data processing has emerged to be one of the killer applications

for Infrastructure-as-a-Service (IaaS) clouds. Major Cloud computing companies have started to integrate

frameworks for parallel data processing in their product portfolio, making it easy for customers to access these

services and to deploy their programs. However, the processing frameworks which are currently used have

been designed for static, homogeneous cluster setups and disregard the particular nature of a cloud.

Consequently, the allocated compute resources may be inadequate for big parts of the submitted job and

unnecessarily increase processing time and cost. In this paper we discuss the opportunities and challenges for

efficient parallel data processing in clouds and present our research project Nephele. Nephele is the first data

processing framework to explicitly exploit the dynamic resource allocation offered by today’s IaaS clouds for

both, task scheduling and execution. Particular tasks of a processing job can be assigned to different types of

virtual machines which are automatically instantiated and terminated during the job execution. Based on this

new framework, we perform extended evaluations of MapReduce-inspired processing jobs on an IaaS cloud

system and compare the results to the popular data processing framework Hadoop.

I. INTRODUCTION
Today a growing number of companies have to process huge amounts of data in a cost-efficient

manner. Classic representatives for these companies are operators of Internet search engines, like Google,

Yahoo, or Microsoft. The vast amount of data they have to deal with ev-ery day has made traditional database

solutions pro-hibitively expensive [5]. Instead, these companies have popularized an architectural paradigm

based on a large number of commodity servers. Problems like processing crawled documents or regenerating a

web index are split into several independent subtasks, distributed among the available nodes, and computed in

parallel.

 In order to simplify the development of distributed applications on top of such architectures, many of

these companies have also built customized data processing frameworks. Examples are Google’s MapReduce

[9], Mi-crosoft’s Dryad [14], or Yahoo!’s Map-Reduce-Merge [6]. They can be classified by terms like high

throughput computing (HTC) or many-task computing (MTC), de-pending on the amount of data and the

number of tasks involved in the computation [20]. Although these systems differ in design, their programming

models share similar objectives, namely hiding the hassle of parallel programming, fault tolerance, and

execution op-timizations from the developer. Developers can typically continue to write sequential programs.

The processing framework then takes care of distributing the program among the available nodes and executes

each instance of the program on the appropriate fragment of data.For companies that only have to process large

amounts of data occasionally running their own data center is obviously not an option. Instead, Cloud

computing has emerged as a promising approach to rent a large IT in-frastructure on a short-term pay-per-usage

basis. Opera-tors of so-called Infrastructure-as-a-Service (IaaS) clouds, like Amazon EC2 [1], let their

customers allocate, access, and control a set of virtual machines (VMs) which run inside their data centers and

only charge them for the period of time the machines are allocated. The VMs are typically offered in different

types, each type with its own characteristics (number of CPU cores, amount of main memory, etc.) and

cost.Since the VM abstraction of IaaS clouds fits the ar-chitectural paradigm assumed by the data processing

frameworks described above, projects like Hadoop [25], a popular open source implementation of Google’s

MapReduce framework, already have begun to promote using their frameworks in the cloud [29]. Only recently,

Amazon has integrated Hadoop as one of its core in-frastructure services [2]. However, instead of embracing its

dynamic resource allocation, current data processing frameworks rather expect the cloud to imitate the static

nature of the cluster environments they were originally designed for. E.g., at the moment the types and number

of VMs allocated at the beginning of a compute job cannot be changed in the course of processing, although the

tasks the job consists of might have completely different demands on the environment. As a result, rented

resources may be inadequate for big parts of the processing job,

Exploiting Dynamic Resource Allocation…

2

 which may lower the overall processing performance and increase the cost.In this paper we want to

discuss the particular chal-lenges and opportunities for efficient parallel data pro- cessing in clouds and present

Nephele, a new processing framework explicitly designed for cloud environments. Most notably, Nephele is the

first data processing frame-work to include the possibility of dynamically allo-cating/deallocating different

compute resources from a cloud in its scheduling and during job execution.This paper is an extended version of

[27]. It includes further details on scheduling strategies and extended experimental results. The paper is

structured as fol-lows: Section 2 starts with analyzing the above men-tioned opportunities and challenges and

derives some important design principles for our new framework. In Section 3 we present Nephele’s basic

architecture and outline how jobs can be described and executed in the cloud. Section 4 provides some first

figures on Nephele’s performance and the impact of the optimizations we propose. Finally, our work is

concluded by related work (Section 5) and ideas for future work (Section 6).

II. CHALLENGES AND OPPORTUNITIES
 Current data processing frameworks like Google’s MapReduce or Microsoft’s Dryad engine have been

de-signed for cluster environments. This is reflected in a number of assumptions they make which are not nec-

essarily valid in cloud environments. In this section we discuss how abandoning these assumptions raises new

opportunities but also challenges for efficient parallel data processing in clouds.

2.1 Opportunities
 Today’s processing frameworks typically assume the re-sources they manage consist of a static set of

homogeneous compute nodes. Although designed to deal with individ-ual nodes failures, they consider the

number of available machines to be constant, especially when scheduling the processing job’s execution. While

IaaS clouds can certainly be used to create such cluster-like setups, much of their flexibility remains unused.One

of an IaaS cloud’s key features is the provisioning of compute resources on demand. New VMs can be allocated

at any time through a well-defined interface and become available in a matter of seconds. Machines which are

no longer used can be terminated instantly and the cloud customer will be charged for them no more. Moreover,

cloud operators like Amazon let their customers rent VMs of different types, i.e. with different computational

power, different sizes of main memory, and storage. Hence, the compute resources available in a cloud are

highly dynamic and possibly heterogeneous.With respect to parallel data processing, this flexibility leads to a

variety of new possibilities, particularly for scheduling data processing jobs. The question a sched-uler has to

answer is no longer “Given a set of compute resources, how to distribute the particular tasks of a job among

them?”, but rather “Given a job, what compute resources match the tasks the job consists of best?”. This new

paradigm allows allocating compute resources dynamically and just for the time they are required in the

processing workflow. E.g., a framework exploiting the possibilities of a cloud could start with a single VM

which analyzes an incoming job and then advises the cloud to directly start the required VMs according to the

job’s processing phases. After each phase, the machines could be released and no longer contribute to the

overall cost for the processing job.Facilitating such use cases imposes some requirements on the design of a

processing framework and the way its jobs are described. First, the scheduler of such a frame-work must

become aware of the cloud environment a job should be executed in. It must know about the different types of

available VMs as well as their cost and be able to allocate or destroy them on behalf of the cloud customer.

 Second, the paradigm used to describe jobs must be powerful enough to express dependencies between

the different tasks the jobs consists of. The system must be aware of which task’s output is required as another

task’s input. Otherwise the scheduler of the processing framework cannot decide at what point in time a par-

ticular VM is no longer needed and deallocate it. The MapReduce pattern is a good example of an unsuitable

paradigm here: Although at the end of a job only few reducer tasks may still be running, it is not possible to shut

down the idle VMs, since it is unclear if they contain intermediate results which are still required.Finally, the

scheduler of such a processing framework must be able to determine which task of a job should be executed on

which type of VM and, possibly, how many of those. This information could be either provided externally, e.g.

as an annotation to the job description, or deduced internally, e.g. from collected statistics, sim-ilarly to the way

database systems try to optimize their execution schedule over time [24].

2.2 Challenges
 The cloud’s virtualized nature helps to enable promising new use cases for efficient parallel data

processing. How-ever, it also imposes new challenges compared to classic cluster setups. The major challenge

we see is the cloud’s opaqueness with prospect to exploiting data locality:In a cluster the compute nodes are

typically intercon-nected through a physical high-performance network. The topology of the network, i.e. the

way the compute nodes are

Exploiting Dynamic Resource Allocation…

3

 physically wired to each other, is usually well-known and, what is more important, does not change

over time. Current data processing frameworks offer to leverage this knowledge about the network hierarchy

and attempt to schedule tasks on compute nodes so that data sent from one node to the other has to traverse as

few network switches as possible [9]. That way network bottlenecks can be avoided and the overall throughput

of the cluster can be improved.In a cloud this topology information is typically not exposed to the customer

[29]. Since the nodes involved in processing a data intensive job often have to trans-fer tremendous amounts of

data through the network, this drawback is particularly severe; parts of the net-work may become congested

while others are essen-tially unutilized. Although there has been research on inferring likely network topologies

solely from end-to-end measurements (e.g. [7]), it is unclear if these techniques are applicable to IaaS clouds.

For security reasons clouds often incorporate network virtualization techniques (e.g. [8]) which can hamper the

inference pro-cess, in particular when based on latency measurements.Even if it was possible to determine the

underlying network hierarchy in a cloud and use it for topology-aware scheduling, the obtained information

would not necessarily remain valid for the entire processing time. VMs may be migrated for administrative

purposes be-tween different locations inside the data center without any notification, rendering any previous

knowledge of the relevant network infrastructure obsolete.As a result, the only way to ensure locality between

tasks of a processing job is currently to execute these tasks on the same VM in the cloud. This may involve

allocating fewer, but more powerful VMs with multiple CPU cores. E.g., consider an aggregation task receiving

data from seven generator tasks. Data locality can be ensured by scheduling these tasks to run on a VM with

eight cores instead of eight distinct single-core machines. However, currently no data processing framework in-

cludes such strategies in its scheduling algorithms

III. DESIGN

 Based on the challenges and opportunities outlined in the previous section we have designed Nephele, a

new data processing framework for cloud environments. Nephele takes up many ideas of previous processing

frameworks but refines them to better match the dy-namic and opaque nature of a cloud.

3.1 Architecture
 Nephele’s architecture follows a classic master-worker pattern as illustrated in Fig. 1.

 Before submitting a Nephele compute job, a user must start a VM in the cloud which runs the so called

Job Manager (JM). The Job Manager receives the client’s jobs, is responsible for scheduling them, and

coordinates their execution. It is capable of communicating with the interface the cloud operator provides to

control the instantiation of VMs. We call this interface the Cloud Controller. By means of the Cloud Controller

the Job Manager can allocate or deallocate VMs according to the current job execution phase. We will comply

with com-mon Cloud computing terminology and refer to these VMs as instances for the remainder of this

paper. The term instance type will be used to differentiate between VMs with different hardware characteristics.

E.g., the instance type “m1.small” could denote VMs with one CPU core, one GB of RAM, and a 128 GB disk

while the instance type “c1.xlarge” could refer to machines with 8 CPU cores, 18 GB RAM, and a 512 GB disk.

The actual execution of tasks which a Nephele job consists of is carried out by a set of instances. Each instance

runs a so-called Task Manager (TM).

Exploiting Dynamic Resource Allocation…

4

 A Task Manager receives one or more tasks from the Job Man-ager at a time, executes them, and after

that informs the Job Manager about their completion or possible errors. Unless a job is submitted to the Job

Manager, we expect the set of instances (and hence the set of Task Managers) to be empty. Upon job reception

the Job Manager then decides, depending on the job’s particular tasks, how many and what type of instances the

job should be executed on, and when the respective instances must be allocated/deallocated to ensure a

continuous but cost-efficient processing. Our current strategies for these decisions are highlighted at the end of

this section.The newly allocated instances boot up with a previ-ously compiled VM image. The image is

configured to automatically start a Task Manager and register it with the Job Manager. Once all the necessary

Task Managers have successfully contacted the Job Manager, it triggers the execution of the scheduled

job.Initially, the VM images used to boot up the Task Managers are blank and do not contain any of the data the

Nephele job is supposed to operate on. As a result, we expect the cloud to offer persistent storage (like e.g.

Amazon S3 [3]). This persistent storage is supposed to store the job’s input data and eventually receive its

output data. It must be accessible for both the Job Manager as well as for the set of Task Managers, even if they

are connected by a private or virtual network.

3.2 Job description
 Similar to Microsoft’s Dryad [14], jobs in Nephele are expressed as a directed acyclic graph (DAG).

Each vertex in the graph represents a task of the overall processing job, the graph’s edges define the

communication flow between these tasks. We also decided to use DAGs to describe processing jobs for two

major reasons:The first reason is that DAGs allow tasks to have multiple input and multiple output edges. This

tremen-dously simplifies the implementation of classic datacombining functions like, e.g., join operations [6].

Sec-ond and more importantly, though, the DAG’s edges explicitly model the communication paths of the

process-ing job. As long as the particular tasks only exchange data through these designated communication

edges, Nephele can always keep track of what instance might still require data from what other instances and

which instance can potentially be shut down and deallocated.Defining a Nephele job comprises three mandatory

steps: First, the user must write the program code for each task of his processing job or select it from an exter-

nal library. Second, the task program must be assigned to a vertex. Finally, the vertices must be connected by

edges to define the communication paths of the job.Tasks are expected to contain sequential code and pro-cess

so-called records, the primary data unit in Nephele. Programmers can define arbitrary types of records. From a

programmer’s perspective records enter and leave the task program through input or output gates. Those input

and output gates can be considered endpoints of the DAG’s edges which are defined in the following step.

Regular tasks (i.e. tasks which are later assigned to inner vertices of the DAG) must have at least one or more

input and output gates. Contrary to that, tasks which either represent the source or the sink of the data flow must

not have input or output gates, respectively.

After having specified the code for the particular tasks of the job, the user must define the DAG to connect

these tasks. We call this DAG the Job Graph. The Job Graph maps each task to a vertex and determines the

commu-nication paths between them. The number of a vertex’s incoming and outgoing edges must thereby

comply with the number of input and output gates defined inside the tasks. In addition to the task to execute,

input and output vertices (i.e. vertices with either no incoming or outgoing edge) can be associated with a URL

pointing to external storage facilities to read or write input or output data, respectively. Figure 2 illustrates the

simplest possible Job Graph. It only consists of one input, one task, and one output vertex.

Exploiting Dynamic Resource Allocation…

5

One major design goal of Job Graphs has been sim-

plicity: Users should be able to describe tasks and their relationships on an abstract level. Therefore, the Job

Graph does not explicitly model task parallelization and the mapping of tasks to instances. However, users who

wish to influence these aspects can provide annotations to their job description. These annotations include:

Number of subtasks: A developer can declare his task to be suitable for parallelization. Users that include such

tasks in their Job Graph can specify how many parallel subtasks Nephele should split the respective task into at

runtime. Subtasks execute the same task code, however, they typically process different fragments of the data.

Number of subtasks per instance: By default each subtask is assigned to a separate instance. In case several

subtasks are supposed to share the same instance, the user can provide a corresponding an-notation with the

respective task.

Sharing instances between tasks: Subtasks of dif-ferent tasks are usually assigned to different (sets of)

instances unless prevented by another scheduling restriction. If a set of instances should be shared between

different tasks the user can attach a cor-responding annotation to the Job Graph.

Channel types: For each edge connecting two ver-tices the user can determine a channel type. Before executing

a job, Nephele requires all edges of the original Job Graph to be replaced by at least one channel of a specific

type. The channel type dictates how records are transported from one subtask to another at runtime. Currently,

Nephele supports network, file, and in-memory channels. The choice of the channel type can have several

implications on the entire job schedule. A more detailled disussion on this is provided in the next subsection.

Instance type: A subtask can be executed on dif-ferent instance types which may be more or less suitable for

the considered program. Therefore we have developed special annotations task developers can use to

characterize the hardware requirements of their code. However, a user who simply utilizes these annotated tasks

can also overwrite the devel-oper’s suggestion and explicitly specify the instance type for a task in the Job

Graph.

 If the user omits to augment the Job Graph with these specifications, Nephele’s scheduler applies

default strategies which are discussed later on in this section.Once the Job Graph is specified, the user submits it

to the Job Manager, together with the credentials he has obtained from his cloud operator. The credentials are

required since the Job Manager must allocate/deallocate instances during the job execution on behalf of the user.

3.3 Job Scheduling and Execution
 After having received a valid Job Graph from the user, Nephele’s Job Manager transforms it into a so-

called Ex-ecution Graph. An Execution Graph is Nephele’s primary data structure for scheduling and

monitoring the execu-tion of a Nephele job. Unlike the abstract Job Graph, the Execution Graph contains all the

concrete information required to schedule and execute the received job on the cloud. It explicitly models task

parallelization and the mapping of tasks to instances. Depending on the level of annotations the user has

provided with his Job Graph, Nephele may have different degrees of freedom in constructing the Execution

Graph. Figure 3 shows one possible Execution Graph constructed from the previ-ously depicted Job Graph

(Figure 2). Task 1 is e.g. split into two parallel subtasks which are both connected to the task Output 1 via file

channels and are all scheduled to run on the same instance. The exact structure of the Execution Graph is

explained in the following:

Exploiting Dynamic Resource Allocation…

6

 Fig. 3. An Execution Graph created from the original Job Graph

In contrast to the Job Graph, an Execution Graph is no longer a pure DAG. Instead, its structure resembles a

graph with two different levels of details, an abstract and a concrete level. While the abstract graph describes the

job execution on a task level (without parallelization) and the scheduling of instance allocation/deallocation, the

concrete, more fine-grained graph defines the map-ping of subtasks to instances and the communication

channels between them.On the abstract level, the Execution Graph equals the user’s Job Graph. For every vertex

of the original Job Graph there exists a so-called Group Vertex in the Execution Graph. As a result, Group

Vertices also rep-resent distinct tasks of the overall job, however, they cannot be seen as executable units. They

are used as a management abstraction to control the set of subtasks the respective task program is split into. The

edges between Group Vertices are only modeled implicitly as they do not represent any physical communication

paths during the job processing. For the sake of presentation, they are also omitted in Figure 3.In order to ensure

cost-efficient execution in an IaaS cloud, Nephele allows to allocate/deallocate instances in the course of the

processing job, when some subtasks have already been completed or are already running. However, this just-in-

time allocation can also cause prob-lems, since there is the risk that the requested instance types are temporarily

not available in the cloud. To cope with this problem, Nephele separates the Execution Graph into one or more

so-called Execution Stages. An Execution Stage must contain at least one Group Vertex. Its processing can only

start when all the subtasks in-cluded in the preceding stages have been successfully processed. Based on this

Nephele’s scheduler ensures the following three properties for the entire job execu-tion: First, when the

processing of a stage begins, all instances required within the stage are allocated. Second, all subtasks included

in this stage are set up (i.e. sent to the corresponding Task Managers along with their required libraries) and

ready to receive records. Third, before the processing of a new stage, all intermediate results of its preceding

stages are stored in a persistent manner. Hence, Execution Stages can be compared to checkpoints. In case a

sufficient number of resources cannot be allocated for the next stage, they allow a running job to be interrupted

and later on restored when enough spare resources have become available.

 The concrete level of the Execution Graph refines the job schedule to include subtasks and their

communica-tion channels. In Nephele, every task is transformed into either exactly one, or, if the task is suitable

for parallel execution, at least one subtask. For a task to complete successfully, each of its subtasks must be

successfully processed by a Task Manager. Subtasks are represented by so-called Execution Vertices in the

Execution Graph. They can be considered the most fine-grained executable job unit. To simplify management,

each Execution Vertex is always controlled by its corresponding Group Vertex.Nephele allows each task to be

executed on its own instance type, so the characteristics of the requested VMs can be adapted to the demands of

the current processing phase. To reflect this relation in the Execution Graph, each subtask must be mapped to a

so-called Execution Instance. An Execution Instance is defined by an ID and an instance type representing the

hardware characteristics of the corresponding VM. It is a schedul-ing stub that determines which subtasks have

to run on what instance (type). We expect a list of available instance types together with their cost per time unit

to be accessible for Nephele’s scheduler and instance types to be referable by simple identifier strings like

“m1.small”.Before processing a new Execution Stage, the sched-uler collects all Execution Instances from that

stage and tries to replace them with matching cloud instances. If all required instances could be allocated the

subtasks are distributed among them and set up for execution.

Exploiting Dynamic Resource Allocation…

7

On the concrete level, the Execution Graph inherits the edges from the abstract level, i.e. edges between Group

Vertices are translated into edges between Execution Ver-tices. In case of task parallelization, when a Group

Vertex contains more than one Execution Vertex, the developer of the consuming task can implement an

interface which determines how to connect the two different groups of subtasks. The actual number of channels

that are connected to a subtask at runtime is hidden behind the task’s respective input and output gates.

However, the user code can determine the number if necessary.Nephele requires all edges of an Execution

Graph to be replaced by a channel before processing can begin. The type of the channel determines how records

are transported from one subtask to the other. Currently, Nephele features three different types of channels,

which all put different constrains on the Execution Graph.

Network channels: A network channel lets two sub-tasks exchange data via a TCP connection. Network

channels allow pipelined processing, so the records emitted by the producing subtask are immediately

transported to the consuming subtask. As a result, two subtasks connected via a network channel may be

executed on different instances. However, since they must be executed at the same time, they are required to run

in the same Execution Stage.

In-Memory channels: Similar to a network chan-nel, an in-memory channel also enables pipelined processing.

However, instead of using a TCP con-nection, the respective subtasks exchange data using the instance’s main

memory. An in-memory channel typically represents the fastest way to transport records in Nephele, however, it

also implies most scheduling restrictions: The two connected subtasks must be scheduled to run on the same

instance and run in the same Execution Stage.

File channels: A file channel allows two subtasks to exchange records via the local file system. The records of

the producing task are first entirely writ-ten to an intermediate file and afterwards read into the consuming

subtask. Nephele requires two such subtasks to be assigned to the same instance. Moreover, the consuming

Group Vertex must be scheduled to run in a higher Execution Stage than the producing Group Vertex. In

general, Nephele only allows subtasks to exchange records across different stages via file channels because they

are the only channel types which store the intermediate records in a persistent manner.

3.4 Parallelization and Scheduling Strategies

 As mentioned before, constructing an Execution Graph from a user’s submitted Job Graph may leave

different degrees of freedom to Nephele. Using this freedom to construct the most efficient Execution Graph (in

terms of processing time or monetary cost) is currently a major focus of our research. Discussing this subject in

detail would go beyond the scope of this paper. However, we want to outline our basic approaches in this

subsection:Unless the user provides any job annotation which contains more specific instructions we currently

pursue a simple default strategy: Each vertex of the Job Graph is transformed into one Execution Vertex. The

default chan-nel types are network channels. Each Execution Vertex is by default assigned to its own Execution

Instance unless the user’s annotations or other scheduling restrictions (e.g. the usage of in-memory channels)

prohibit it. The default instance type to be used is the one with the lowest price per time unit available in the

IaaS cloud.One fundamental idea to refine the scheduling strat-egy for recurring jobs is to use feedback data.

We de-veloped a profiling subsystem for Nephele which can continously monitor running tasks and the

underlying instances. Based on the Java Management Extensions (JMX) the profiling subsystem is, among other

things, capable of breaking down what percentage of its pro-cessing time a task thread actually spends

processing user code and what percentage of time it has to wait for data. With the collected data Nephele is able

to detect both computational as well as I/O bottlenecks. While computational bottlenecks suggest a higher

degree of parallelization for the affected tasks, I/O bottlenecks provide hints to switch to faster channel types

(like in-memory channels) and reconsider the instance assign-ment. Since Nephele calculates a cryptographic

signature for each task, recurring tasks can be identified and the previously recorded feedback data can be

exploited.

 At the moment we only use the profiling data to detect these bottlenecks and help the user to choose

reasonable annotations for his job. Figure 4 illustrates the graphical job viewer we have devised for that purpose.

It provides immediate visual feedback about the current utilization of all tasks and cloud instances involved in

the compu-tation. A user can utilize this visual feedback to improve his job annotations for upcoming job

executions. In more advanced versions of Nephele we envision the system to automatically adapt to detected

bottlenecks, either between consecutive executions of the same job or even during job execution at

runtime.While the allocation time of cloud instances is deter-mined by the start times of the assigned subtasks,

there are different possible strategies for instance deallocation. In order to reflect the fact that most cloud

providers charge their customers for instance usage by the hour, we integrated the possibility to reuse instances.

Nephele can keep track of the instances’ allocation times.

Exploiting Dynamic Resource Allocation…

8

 An instance of a particular type which has become obsolete in the current Execution Stage is not

immediately deallocated if an instance of the same type is required in an upcoming Execution Stage. Instead,

Nephele keeps the instance allocated until the end of its current lease period. If the next Execution Stage has

begun before the end of that period, it is reassigned to an Execution Vertex of that stage, otherwise it deallocated

early enough not to cause any additional cost.Besides the use of feedback data we recently com-plemented our

efforts to provide reasonable job an-notations automatically by a higher-level programming model layered on

top of Nephele. Rather than describing

 jobs as arbitrary DAGs, this higher-level programming model called PACTs [4] is centered around the

con-catenation of second-order functions, e.g. like the map and reduce function from the well-known

MapReduce programming model. Developers can write custom first-order functions and attach them to the

desired second-order functions. The PACTs programming model is se-mantically richer than Nephele’s own

programming ab-straction. E.g. it considers aspects like the input/output cardinalities of the first order functions

which is helpful to deduce reasonable degrees of parallelization. More details can be found in [4].

IV. EVALUATION

 In this section we want to present first performance results of Nephele and compare them to the data

pro-cessing framework Hadoop. We have chosen Hadoop as our competitor, because it is an open source soft-

ware and currently enjoys high popularity in the data processing community. We are aware that Hadoop has

been designed to run on a very large number of nodes (i.e. several thousand nodes). However, according to our

observations, the software is typically used with signif-icantly fewer instances in current IaaS clouds. In fact,

Amazon itself limits the number of available instances for their MapReduce service to 20 unless the respective

customer passes an extended registration process [2].The challenge for both frameworks consists of two abstract

tasks: Given a set of random integer numbers, the first task is to determine the k smallest of those

Exploiting Dynamic Resource Allocation…

9

 numbers. The second task subsequently is to calculate the average of these k smallest numbers. The job

is a classic representative for a variety of data analysis jobs whose particular tasks vary in their complexity and

hardware demands. While the first task has to sort the entire data set and therefore can take advantage of large

amounts of main memory and parallel execution, the second aggregation task requires almost no main memory

and, at least eventually, cannot be parallelized.We implemented the described sort/aggregate task for three

different experiments. For the first experiment, we implemented the task as a sequence of MapReduce programs

and executed it using Hadoop on a fixed set of instances. For the second experiment, we reused the same

MapReduce programs as in the first experiment but devised a special MapReduce wrapper to make these

programs run on top of Nephele. The goal of this experiment was to illustrate the benefits of dynamic resource

allocation/deallocation while still maintaining the MapReduce processing pattern. Finally, as the third

experiment, we discarded the MapReduce pattern and implemented the task based on a DAG to also highlight

the advantages of using heterogeneous instances.For all three experiments, we chose the data set size to be 100

GB. Each integer number had the size of 100 bytes. As a result, the data set contained about 10
9
 distinct integer

numbers. The cut-off variable k has been set to 2 10
8
, so the smallest 20 % of all numbers had to be determined

and aggregated.

4.1 General hardware setup
 All three experiments were conducted on our local IaaS cloud of commodity servers. Each server is

equipped with two Intel Xeon 2:66 GHz CPUs (8 CPU cores) and a total main memory of 32 GB. All servers

are connected through regular 1 GBit/s Ethernet links. The host operating system was Gentoo Linux (kernel

version 2.6.30) with KVM [15] (version 88-r1) using virtio [23] to provide virtual I/O access.To manage the

cloud and provision VMs on request of Nephele, we set up Eucalyptus [16]. Similar to Amazon EC2,

Eucalyptus offers a predefined set of instance types a user can choose from. During our experiments we used

two different instance types: The first instance type was “m1.small” which corresponds to an instance with one

CPU core, one GB of RAM, and a 128 GB disk. The second instance type, “c1.xlarge”, represents an instance

with 8 CPU cores, 18 GB RAM, and a 512 GB disk. Amazon EC2 defines comparable instance types and offers

them at a price of about 0:10 $, or 0:80 $ per hour (September 2009), respectively.The images used to boot up

the instances contained Ubuntu Linux (kernel version 2.6.28) with no addi-tional software but a Java runtime

environment (version 1.6.0 13), which is required by Nephele’s Task Manager.The 100 GB input data set of

random integer numbers has been generated according to the rules of the Jim Gray sort benchmark [18]. In order

to make the data accessible to Hadoop, we started an HDFS [25] data node on each of the allocated instances

prior to the processing job and distributed the data evenly among the nodes. Since this initial setup procedure

was necessary for all three experiments (Hadoop and Nephele), we have chosen to ignore it in the following

performance discussion.

4.2 Experiment 1: MapReduce and Hadoop
 In order to execute the described sort/aggregate task with Hadoop we created three different

MapReduce programs which were executed consecutively.The first MapReduce job reads the entire input data

set, sorts the contained integer numbers ascendingly, and writes them back to Hadoop’s HDFS file system.

Since the MapReduce engine is internally designed to sort the incoming data between the map and the reduce

phase, we did not have to provide custom map and reduce functions here. Instead, we simply used the TeraSort

code, which has recently been recognized for being well-suited for these kinds of tasks [18]. The result of this

first MapReduce job was a set of files containing sorted integer numbers. Concatenating these files yielded the

fully sorted sequence of 10
9
 numbers.The second and third MapReduce jobs operated on the sorted data set and

performed the data aggregation. Thereby, the second MapReduce job selected the first output files from the

preceding sort job which, just by their file size, had to contain the smallest 2 10
8
 numbers of the initial data set.

The map function was fed with the selected files and emitted the first 2 10
8
 numbers to the reducer. In order to

enable parallelization in the reduce phase, we chose the intermediate keys for the reducer randomly from a

predefined set of keys. These keys ensured that the emitted numbers were distributed evenly among the n

reducers in the system. Each reducer

then calculated the average of the received
2 108

 integer

n

 numbers. The third MapReduce job finally read the n intermediate average values and aggregated them

to a single overall average.Since Hadoop is not designed to deal with heteroge-neous compute nodes, we

allocated six instances of type “c1.xlarge” for the experiment. All of these instances were assigned to Hadoop

throughout the entire duration of the experiment.We configured Hadoop to perform best for the first,

computationally most expensive, MapReduce job: In ac-cordance to [18] we set the number of map tasks per job

to 48 (one map task per CPU core) and the number of reducers to 12.

Exploiting Dynamic Resource Allocation…

10

 The memory heap of each map task as well as the in-memory file system have been increased to 1 GB

and 512 MB, respectively, in order to avoid unnecessarily spilling transient data to disk.

4.5 Results
 Figure 7, Figure 8 and Figure 9 show the performance results of our three experiment, respectively. All

three plots illustrate the average instance utilization over time, i.e. the average utilization of all CPU cores in all

in-stances allocated for the job at the given point in time. The utilization of each instance has been monitored

with the Unix command “top” and is broken down into the amount of time the CPU cores spent running the

respective data processing framework (USR), the kernel and its processes (SYS), and the time waiting for I/O to

complete (WAIT). In order to illustrate the impact of network communication, the plots additionally show the

average amount of IP traffic flowing between the instances over time.We begin with discussing Experiment 1

(MapReduce and Hadoop): For the first MapReduce job, TeraSort, Figure 7 shows a fair resource utilization.

During the map (point (a) to (c)) and reduce phase (point (b) to (d)) the overall system utilization ranges from 60

to 80%. This is reasonable since we configured Hadoop’s MapReduce engine to perform best for this kind of

task. For the following two MapReduce jobs, however, the allocated instances are oversized: The second job,

whose map and reduce phases range from point (d) to (f) and point (e) to (g), respectively, can only utilize about

one third of the available CPU capacity. The third job (running between point (g) and (h)) can only consume

about 10 % of the overall resources.The reason for Hadoop’s eventual poor instance uti-lization is its

assumption to run on a static compute cluster. Once the MapReduce engine is started on a set of instances, no

instance can be removed from that set without the risk of losing important intermediate results. As in this case,

all six expensive instances must be allocated throughout the entire experiment and un-necessarily contribute to

the processing cost.Figure 8 shows the system utilization for executing the same MapReduce programs on top of

Nephele. For the first Execution Stage, corresponding to the TeraSort map and reduce tasks, the overall resource

utilization is comparable to the one of the Hadoop experiment. During the map phase (point (a) to (c)) and the

reduce phase (point (b) to (d)) all six “c1.xlarge” instances show an average utilization of about 80 %. However,

after ap-proximately 42 minutes, Nephele starts transmitting the sorted output stream of each of the 12

TeraSortReduce subtasks to the two instances which are scheduled to remain allocated for the upcoming

Execution Stages. At the end of Stage 0 (point (d)), Nephele is aware that four of the six “c1.xlarge” are no

longer required for the upcoming computations and deallocates them.

V. RELATED WORK
 In recent years a variety of systems to facilitate MTC has been developed. Although these systems

typically share common goals (e.g. to hide issues of parallelism or fault tolerance), they aim at different fields of

application.Once a user has fit his program into the required map and reduce pattern, the execution framework

takes care of splitting the job into subtasks, distributing and executing them. A single MapReduce job always

consists of a distinct map and reduce program. However, several systems have been introduced to coordinate the

execution of a sequence of MapReduce jobs MapReduce has been clearly designed for large static clusters.

Although it can deal with sporadic node fail-ures, the available compute resources are essentially considered to

be a fixed set of homogeneous machines.The Pegasus framework by Deelman et al. [10] has been designed for

mapping complex scientific workflows onto grid systems. Similar to Nepehle, Pegasus lets its users describe

their jobs as a DAG with vertices repre-senting the tasks to be processed and edges representing the

dependencies between them. The created workflows remain abstract until Pegasus creates the mapping be-tween

the given tasks and the concrete compute re-sources available at runtime. The authors incorporate interesting

aspects like the scheduling horizon which determines at what point in time a task of the overall processing job

should apply for a compute resource. This is related to the stage concept in Nephele. However, Nephele’s stage

concept is designed to minimize the number of allocated instances in the cloud and clearly focuses on reducing

cost. In contrast, Pegasus’ schedul-ing horizon is used to deal with unexpected changesin the execution

environment. Pegasus uses DAGMan and Condor-G [13] as its execution engine. As a result, different task can

only exchange data via files.Thao et al. introduced the Swift [30] system to re-duce the management issues

which occur when a job involving numerous tasks has to be executed on a large, possibly unstructured, set of

data. Building upon compo-nents like CoG Karajan [26], Falkon [21], and Globus [12], the authors present a

scripting language which allows to create mappings between logical and physical data structures and to

conveniently assign tasks to these.The system our approach probably shares most simi-larities with is Dryad

[14]. Dryad also runs DAG-based jobs and offers to connect the involved tasks through either file, network, or

in-memory channels. However, it assumes an execution environment which consists of a fixed set of

homogeneous worker nodes.

Exploiting Dynamic Resource Allocation…

11

 The Dryad scheduler is designed to distribute tasks across the available compute nodes in a way that

optimizes the throughput of the overall cluster. It does not include the notion of processing cost for particular

jobs.In terms of on-demand resource provising several projects arose recently: Dornemann¨ et al. [11] presented

an approach to handle peak-load situations in BPEL workflows using Amazon EC2. Ramakrishnan et al. [22]

discussed how to provide a uniform resource abstraction over grid and cloud resources for scientific workflows.

Both projects rather aim at batch-driven workflows than the data-intensive, pipelined workflows Nephele

focuses on. The FOS project [28] recently presented an operating system for multicore and clouds which is also

capable of on-demand VM allocation.

VI. CONCLUSION
 In this paper we have discussed the challenges and opportunities for efficient parallel data processing in

cloud environments and presented Nephele, the first data processing framework to exploit the dynamic re-source

provisioning offered by today’s IaaS clouds. We have described Nephele’s basic architecture and pre-sented a

performance comparison to the well-established data processing framework Hadoop. The performance

evaluation gives a first impression on how the ability to assign specific virtual machine types to specific tasks of

a processing job, as well as the possibility to automatically allocate/deallocate virtual machines in the course of

a job execution, can help to improve the overall resource utilization and, consequently, reduce the processing

cost.With a framework like Nephele at hand, there are a variety of open research issues, which we plan to

address for future work. In particular, we are interested in im-proving Nephele’s ability to adapt to resource

overload or underutilization during the job execution automati-cally. Our current profiling approach builds a

valuable basis for this, however, at the moment the system still requires a reasonable amount of user

annotations.In general, we think our work represents an important contribution to the growing field of Cloud

computing services and points out exciting new opportunities in the field of parallel data processing.

REFERENCES
[1] A. Kivity. kvm: the Linux Virtual Machine Monitor. In OLS ’07: The 2007 Ottawa Linux Symposium, pages 225–230, July 2007.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

[3] Youseff, and D. Zagorodnov. Eucalyptus: A Technical Report on an Elastic Utility Computing Architecture Linking Your Programs
to Useful Systems. Technical report, University of California, Santa Barbara, 2008.

[4] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A Not-So-Foreign Language for Data Processing. In

[5] SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 1099–1110, New

York, NY, USA, 2008. ACM.

[6] O. O’Malley and A. C. Murthy. Winning a 60 Second Dash with a Yellow Elephant. Technical report, Yahoo!, 2009.

[7] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the Data: Parallel Analysis with Sawzall. Sci. Program., 13(4):277–
298, 2005.

