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Abstract : According to a famous result of Enestrom and Kakeya, if  
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is a polynomial of degree n such that 

                             011 ......0 aaaa nn   , 

then P(z) does not vanish in 1z . In this paper we relax the hypothesis of this result in several ways and 

obtain zero-free regions for polynomials with restricted coefficients and thereby present some interesting 

generalizations and extensions of the Enestrom-Kakeya Theorem.   
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1. Introduction And Statement Of Results 
The following elegant result on the distribution of zeros of a polynomial is due to Enestrom and 

Kakeya [6] : 
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
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0
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                              0...... 011   aaaa nn , 

then P(z) has all its zeros  in 1z . 

Applying the above result to the polynomial )
1

(
z

Pz n
, we get the following result : 

Theorem B : If 
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)(  is a polynomial of degree n such that 

                              011 ......0 aaaa nn   , 

then P(z) does not vanish in 1z . 

In the literature [1-5, 7,8], there exist several extensions and generalizations of the Enestrom-Kakeya Theorem . 

Recently B. A. Zargar [9] proved the following results: 

Theorem C: Let 



n

j

j

j zazP
0

)(  be  a polynomial of degree n . If for some    real number 1k ,  
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then P(z) does not vanish in the disk 
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Theorem D: Let 
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then P(z) does not vanish in the disk 
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Theorem E: Let 



n

j

j

j zazP
0

)(  be a polynomial of degree n . If for some real number 1k ,  
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then P(z) does not vanish in  
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Theorem F: Let 
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)(  be  a polynomial of degree n . If for some real number  ,0 ,  

                                  0...... 011   aaaa nn  , 

then P(z) does not vanish in the disk 
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In this paper we give generalizations of the above mentioned results. In fact, we prove the following results: 

Theorem 1: Let 



n
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0

)(  be a polynomial of degree n . If for some      real numbers 1k  and 

,0 ,  

                                  011 ...... kaaaa nn   , 

then P(z) does not vanish in the disk 
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Remark 1: Taking ,0 na  Theorem 1 reduces to Theorem C and taking k=1 and ,0 na  , it 

reduces to Theorem D. 

Theorem 2: Let 

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)(  be  a polynomial of degree n . If for some  real numbers 0  and  
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                                  011 ...... aaaa nn    , 

then P(z) does not vanish in  
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Remark 2: Taking 1  and 00 a , Theorem 1 reduces to Theorem F and taking  1  , 00 a  and 

1,)1(  kak n , it reduces to Theorem E .  

Also taking 1,)1(  kak n , we get the following result which reduces to Theorem E by taking 00 a  

and 1 . 

Theorem 3: Let 
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                                  011 ...... aaaka nn   , 

then P(z) does not vanish in the disk 
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2.Proofs of the Theorems 

 
    Proof of Theorem 1: We have 
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This shows that all the zeros of F(z) whose modulus is greater than 1 lie in the closed disk 
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But those zeros of F(z) whose modulus is less than or equal to 1 already lie in the above disk. Therefore, it 

follows that all the zeros of F(z) and hence Q(z) lie in 
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Hence P(z) does not vanish in the disk 
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That proves Theorem 1. 

Proof of Theorem 2: We have 
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That proves Theorem 2.  
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