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Abstract: Firstly, two new kinds of Kronecker decompositions is developed, i.e. KPGD and KPID; Secondly, 

the sufficient and necessary conditions and algorithms of Kronecker product(KPD), KPGD, and KPID are 

discussed; At last, some useful properties of the rank of the sum of Kronecker product gemel decompositions are 

obtained. 
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I. Introduction 

Because of its elegant algebraic properties, the Kronecker product is a useful tool to solve matrix 

equations and the nearest kronecker product problems[1,2], do inference in multivariate analysis[3], and 

construct fast and practical algorithms in signal processing, image processing, computer vision, semidefinite 

programming, quantum computing, linear systems and stochastic automata networks etc. see[1,4,5,6,7,8,9,10] 

and so on. Meantime, the applications in nearly all those areas are related to some certain kinds of Kronecker 

product decompositions which in fact are the inverse problems of Kronecker product, see [3,13,14,18] etc. 

Usually, Kronecker product decomposition(KPD) means that a matrixM can be transformed to the 

ronecker product form of the other matrices A;B, i:e: M = A  B;  Kronecker product gemel 

decomposition(KPGD) means the Kronecker product with the special case A = B; And Kronecker product 

isomer decomposition(KPID) corresponds to the case M = A A′. Obviously, these decompositions often have 

many solutions as well as the other inverse problems. In this direction, Eugene Tyrtyshnikov[14] has some 

interesting work about Kronecker ranks; T.G.Kolda[12] has some meaningful work on orthogonal tensor 

decompositions; DE Launey and Seberry[18] developed some properties and their applications on the strong 

Kronecker product; In addition, Sadegh Jokar and Molker Mehrmann[11], Jun-e Feng, James Lam, Yimin 

Wei[13] etc, have obtained some useful properties of the sum of Kronecker products. Undoubtedly, 

these different decompositions are helpful for dimensionality reduction procedure which is very important key 

for high dimensional image processing and gene analyzing. 

 Unfortunately, many natural questions about seemingly “simple”cases are still not answered in spite 

of an ever increasing interest and some significant results with applications, such as the conditions and the rank 

of the sum of these decompositions. In this paper, from the perspective of the inverse problem theory, we mainly 

explore the sufficient and necessary conditions and algorithms of KPD, KPGD, KPID, and obtain some useful 

properties of the rank of the sum of Kronecker product gemel decomposition. And our research works are 

mainly motivated by doing multivariate statistical inference and huge dimensional statistical analysis, solving 

high dimensional matrix equations and constructing the algorithm of image processing and computer vision. 
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II. KPD, KPGD And KPID Problems 

Obviously, the essential preconditions of KPD(M = A B), KPGD(M = AA) and KPID(M =  

AA′) means that the matrices M,A,B have the proper columns and rows. And this is easily verified, so, we 

assume that all the matrices in the following discussion have the suitable column and row numbers. 

 

2.1 The sufficient and necessary conditions of KPD 

Let 1( , , ) n m
mA a a R    with ,1n

ia R i m   , then denote 1 2( ) ( ', ', , ') 'mvec A a a a  . 

Firstly, we explore the sufficient and necessary conditions of Kronecker product decomposition,  

and give the elegant form of this result as follows. 

Theorem 2.1. (KPD) For an arbitrary matrix 
mr nsM R  , 
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, ( , 1, , , 1, , )r s
ijM R i m j n     , can be decomposed to the form 

M A B  , where 
m nA R  ,

r sB R  ,m, n, r, s are some certain integers. 

 (equivalent to) rank 11 12 1( ), ( ), , ( ), , ( )n mnvec M vec M vec M vec M  =1. 

Miraculously, the proof of this theorem is not difficult, so the details of the proof are omitted. 

Remark 1. Generally speaking, the KPD of an arbitrary matrix is not unique, because of (kA)  (lB) = A   

B with kl = 1 for arbitrary constants k; l and matrices A,B.  

The following algorithm describes the general program of KPD problem that includes whether a matrix can 

be decomposed or not and how to get the results of KPD. 

Algorithm 1(KPD): 

step 1: input , , , ,M m n r s , verify the size of M is mr ns  and M! = 0 

step 2: define ijM , 1, ,i m  , 1, ,j n   

step 3: calculate ( )ijvec M  

step 4: if rank{ 11 12 1( ), ( ), , ( ), , ( )n mnvec M vec M vec M vec M   } == 1 goto step 5 

else output ”can not decomposition”; end 

step 5: look for the first ijM  ! = 0, define B = ijM  

step 6: calculate ija : ( )ijvec M  = ija ( )vec B , 1, ,i m  , 1, ,j n   

step 7: define ( )ijA a , 1, ,i m  , 1, ,j n  ; output A,B; end 
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2.2 The sufficient and necessary conditions of KPGD and KPID 

With the similar inference, we can have the following conditions about KPGD. 

Theorem 2.2. (KPGD) For an arbitrary matrix 
2 2p qM R  ( 0M  ), 
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, ( , 1, , , 1, , )p q
ijM R i p j q     , can be decomposed to the form 

M A A  , where 
p qA R  , ,p q  are some certain integers. 

 (equivalent to) there exists a subblock 0ijM  , and , 0
ij
i jm   where 1, , , 1, ,,( )

ij
ij s p t qs tM m     , 

if denote 1, , , 1, ,,/ ( )
ij

ij kl k p l qi jM m a     A  or A , then for , , kl klk l M a A  . 

Corollary 2.3. Denote 
2 2p qM R  ( 0M  ), ( ), 1, , , 1, ,ijM M i p j q    ,

p q
ijM R   , 

and 1, , , 1, ,,( )
ij

ij s p t qs tM m     , then the matrix M can be carried out KPGD ( )M A A    

rank 11 12 1( ), ( ), , ( ), , ( )q pqvec M vec M vec M vec M  =1. 

The following algorithm describes the general program of KPGD problem that includes whether a matrix 

can be decomposed or not and how to get the results of KPGD. 

Algorithm 2(KPGD): 

step 1: input , ,M p q , verify the size of M is 
2 2p q  and M ! = 0 

step 2: define flag=0, ijM , 1, , , 1, ,i p j q    

step 3: for ( , )i j , 1, , , 1, ,i p j q    

if: ijM == 0, continue; 

else if: ijM ! = 0&& , 0
ij
i jm     flag=1;  break; 

else: define ,/
ij

ij i jB M m     flag=2;  break; 

step 4: if flag==2&&M == B B       A = B;   output A;  end 

else output ”can not gemel decomposition”;          end 

Theorem 2.4. (KPID) For an arbitrary matrix 
2 2p qM R  ( 0M  ), 
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'M A A  , where 
p qA R  , ,p q  are some certain integers. 

 (equivalent to) there exists a subblock 0ijM  , and , 0
ij
j im   where 1, , , 1, ,,( )

ij
ij s p t qs tM m     , 

such that , , 'kl klk l M a A  , where 1, , , 1, ,( )kl k p l qA a     , and ,' /
ij

ij i jA M m  or 

,' /
ij

ij i jA M m  . 

1, , , 1, ,i k j n   , then 

III. The Rank Of The Sum Of KPGD 

In this section, we discuss some properties of the rank of the sum of KPGD(
1

k
i ii

A A


 ). 

Lemma 3.1. Let A and B be n × n real symmetric matrices. 

(i) There exists a real orthogonal matrix Q such that Q′AQ and Q′BQ are both diagonal if and 

only if AB = BA (that is AB is symmetric). 

(ii) The previous result holds for more than two matrices. A set of real symmetric matrices 

are simultaneously diagonalizable by the same orthogonal matrix Q if and only if they commute pairwise. 

see George A. F. Seber[17] for more details about matrices simultaneous diagonalization. 

Theorem 3.2. Let 1A Ak， ，  ( 2k  ) be n n  real symmetric and positive definite(> 0) 

or negative definite(< 0) matrices. If they commute pairwise, then rank(
1

k
i ii

A A


 ) 

= 
2 2

1( )rank A n . 

Proof: By the result of Lemma 3.1, there exists an orthogonal matrix Q, such that  

1' ( , , )i i inQA Q diag    , 1, ,i k  , where 1, ,i in   are the eigenvalues of iA , and 0ij  , 

1 11 1
( )( )( ) ( , , ) ( , , )

k k
i i i in i ini i

Q Q A A Q Q diag diag   
 

         

Obviously, the 
2

1 11
( ( , , ) ( , , ))

k
i in i ini

rank diag diag n   


    , then the proof is completed. 

With similar discussions, we have the following two theorems. 

Theorem 3.3. Let 1A Ak， ，  ( 2k  ) be n n  real symmetric matrices, there at least a positive 

definite(> 0) or negative definite(< 0) matrices. If they commute pairwise, then rank(
1

k
i ii

A A


 ) 

= 
2 2

1( )rank A n . 

Theorem 3.4. Let 1A Ak， ，  ( 2k  ) be n n  real symmetric and positive definite(> 0) 

or negative definite(< 0) matrices. If they commute pairwise, then 

rank(
1

k
i ii

A A


 )  1 1max ( ), , ( )k krank A A rank A A   . 
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These results will be helpful to study the solutions of the following general Sylvester matrix 

equation problem[19, 20]: 

 1 1 1
( ) ( )

k
k k i ii

A XA A XA C A A vec X vec C


       

Theorem 3.5. Let ,A B  be n n  real symmetric matrices with AB BA , the eigenvalues of A  are 

1, , n  , then the eigenvalues of B  are  1, , n  , define the vector 1( , , ) 'n    , 

1( , , ) 'n    , 1( , , ) 'n    , where 1, , n   is an arbitrary permutation of the elements 

1( , , ) 'n    ,  ( , ) : 0, , 1, , ,i j i jQ i j i j n           the number of Q , then  

2 2
max min( )n rank A A B B n         

Proof: There exists an orthogonal matrix Q, such that 1' ( , , )nQAQ diag     and 

1' ( , , )nQBQ diag    . Thus, 

1 1( )( )( ' ') ( , , ) ( , , )n nQ Q A A B B Q Q diag diag            

1 1( , , ) ( , , )n ndiag diag      . Calculate the number of nonzero elements of 

 , , 1, ,i j i j i j n       , and the result is obtained. 

 

IV. Discussion 

In this paper, we discuss the sufficient and necessary conditions and algorithms of KPD, KPGD and 

KPID problems, which play a great role in all kinds of Kronecker product application areas, and obtain some 

useful properties of the rank of the sum of KPGD(
1

k
i ii

A A


 ) in simultaneous diagonalization situation 

which performs some wonderful algebra advantages. More interesting work in the future maybe include the 

following aspects: the conditions that a matrix can be decomposed to the form 
1

k
i ii

A B


  which is a 

meaningful work especially in sparse matrices cases[11, 21], decomposing program, and the properties of the 

rank of the sum of decomposition in more general cases. Also, those Kronecker product decomposition 

properties maybe associated with seeking the sufficient and necessary conditions under which the following 

matrix equation 
1

( )
n

i ii
A I X B C


  has a uniquely solution, where ,i iA B  and iC  are known 

matrices, and X  is an unknown matrix. 
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