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Abstract: The Knapsack Problem is a well-known combinatorial optimization problem that aims to maximize 

the total utility of selected items within a given weight constraint. This study presents a comparative analysis of 

three algorithms to solve the Knapsack Problem: Genetic Algorithm (GA), Artificial Immune System (AIS), and a 

hybrid GA-AIS algorithm. We generated test data comprising 50 items with specific weights and values, and a 

knapsack capacity of 1000. The experimental results demonstrated that all three algorithms were effective in 

maximizing the total value while adhering to the weight constraint. The AIS and GA-AIS algorithms achieved the 

highest total value of 3123, outperforming the GA's total value of 3121. In terms of computational efficiency, the 

GA-AIS hybrid required the fewest iterations (69), followed by GA (71), and AIS (85). The GA-AIS hybrid 

algorithm stands out for its combination of high total value and computational efficiency, making it a highly 

effective approach for solving the Knapsack Problem. 
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I. INTRODUCTION  

The Knapsack Problem is a renowned combinatorial optimization problem. It involves selecting a subset 

of items from a given set, each with a weight and a utility value. The objective is to maximize the total utility 

while adhering to a budget constraint on the total weight of the selected items. An issue frequently arises in the 

allocation of resources, wherein the individual responsible for making decisions must select from a collection of 

indivisible projects or tasks within a predetermined budget(Baldo et al., 2023). The knapsack problem has been 

recognized for more than a century. Contrary to popular belief, the name "knapsack" was not suggested by Tobias 

Dantzig, the father of George Dantzig (1884-1956), as the term does not appear in his book. The initial studies on 

algorithms were published in the 1950s by Dantzig and Bellman. However, it was in the 1960s that a significant 

surge in research activity began. The subsequent decades have demonstrated the success of this topic, as evidenced 

by its ranking as the 18th most popular algorithmic problem and the second most popular among the NP-hard 

problems(Cacchiani et al., 2022). 

Since Dantzig's groundbreaking work, knapsack problems have received extensive research attention and 

have had significant applications in various industries and financial management. In addition, several integer 

programming problems can be converted into knapsack problems by relaxing certain constraints. Consequently, 

solving knapsack problems has become the benchmark for computational efficiency in integer problems. 

Numerous novel contributions have been documented in the subsequent literature to address this issue. A genetic 

algorithm-based metaheuristic has been developed to solve the multidimensional knapsack problem(Wu et al., 

2017). Numerous meta-heuristic algorithms with a broad range of applications to various real-world problems are 

available in the literature. The paper primarily focuses on the SA (Simulated Annealing) and GA (Genetic 

Algorithm) as they serve as foundational algorithms for other recently developed meta-heuristic 

algorithms(Ezugwu et al., 2019). 

Metaheuristic methods utilize various operators, including particles in particle swarm optimization 

(PSO)(Dahmani et al., 2020), fireflies in the firefly algorithm (FA)(Bhattacharjee & Sarmah, 2015), ants in ant 

colony algorithms (ACO)(BenMansour, 2023), chromosomes in genetic algorithms (GA)(Saraswat & Tripathi, 

2021), and antibodies in the Artificial Immune System. The objective of these algorithms is to identify a global 

optimal or nearly global optimal through an iterative search. Populations will consistently migrate towards the 

global optimum and avoid getting stuck in local optima by employing various strategies, including information 

transmission, evolutionary tactics, and social behavior(Y. Zhou et al., 2023). 

Genetic Algorithms (GA) have demonstrated their efficacy in achieving near-optimal solutions for 

complex problems. However, to enhance the efficiency of solutions and avoid early convergence, the operators 

used in the genetic algorithm relied heavily on large population sizes, resulting in slower computational speed 

compared to more recent algorithms. Hence, in this study, we present a method to achieve a substantial 
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enhancement in GA for superior solution quality and reduced computational expenses while maintaining 

simplicity of implementation. Therefore, we examined the clonal selection algorithm from Artificial Immune 

Systems (AIS) to draw inspiration for genetic processes in Genetic Algorithms (GA). Next, we conducted a 

performance comparison between the proposed algorithm, known as GA-AIS, and its ability to solve the knapsack 

problem(Farhan & Zukhri, 2020). 

 

II. EXPERIMENTAL PROCEDURE  

 

2.1.  Mathematical Model of Knapsack Problem 

The classic problem of Knapsack Probblem is 0/1 Knapsack Problem. Here's a mathematical model for 

the 0/1 Knapsack Problem. 

Notation 

 n: Number of items. 

 wi: Weight of item i 

 vj: value of item i. 

 W: maximum capacity of Knapsack. 

 Dk: Total demand for demand k. 

 xi: Binary variable, 1 if item i is selected, 0 otherwise. 

Objective 

Maximize the total value without exciding Knapsack capacity: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1   (1) 

Constraints 

1. Capacity constraints for each knapsack: 

 ∑ 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑛
𝑖=1  (2) 

2. Binary Constraints for item selection: 

 𝑥𝑖 ∈ {0,1}  ∀𝑖 = 1,2, … , 𝑛 (3) 

 

Model Summary 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑣𝑖𝑥𝑖
𝑛
𝑖=1  

 Subject to: 

 ∑ 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑛
𝑖=1  

 𝑥𝑖 ∈ {0,1}  ∀𝑖 = 1,2, … , 𝑛 

  

The 0/1 Knapsack Problem is a classic combinatorial optimization problem where the objective is to 

maximize the total value of items placed in a knapsack without exceeding its capacity. Each item has a specific 

weight and value, and the decision to include an item is binary (either included or not). The mathematical model 

consists of maximizing the sum of the values of the selected items while ensuring that the total weight does not 

surpass the knapsack's capacity. 

 

2.2.    Genetic Algorithm 

The pseudocode for the Genetic Algorithm (GA) is as follows: 

Input: Population size N, Crossover rate β, Mutation rate ρ, Number of generations G 

Output: Best solution found 

1. P ← initialize_population(N) 

2. evaluate_fitness(P) 

3. For g = 1 to G do 

    a. Parents ← select_parents(P) 

    b. Offspring ← crossover(Parents, β) 

    c. Mutated_Offspring ← mutate(Offspring, ρ 

    d. evaluate_fitness(Mutated_Offspring) 

    e. P ← replace_population(P, Mutated_Offspring, N) 

4. best_solution ← find_best_solution(P) 

5. Return best_solution 

End 

The pseudocode above shows the evolution process using a Genetic Algorithm (GA) which aims to find 

the best solution in an optimization problem. The algorithm starts by initializing an initial population P with size 

N. Each individual in the population is evaluated for its fitness value. Next, in each generation G, several steps 

are carried out: first, the best individuals are selected as parents. Second, the crossover is carried out on the parental 

pair to produce new offspring with a crossover level of β. Third, the offspring are mutated with a mutation rate ρ 
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using the swap_genes, reverse_subsequence, and insert_gene operations. After that, the fitness value of the 

mutated offspring is evaluated. The old population is then replaced by a new population consisting of the best 

individuals from the mutated breeds. This process is repeated until the specified number of G generations is 

reached. Finally, the best solution found in the current population is returned as the final result. This algorithm 

combines selection, crossover, and mutation to explore the solution space and find the optimal solution effectively. 

 

2.3.     Artificial Immune System 

The pseudocode for the Artificial Immune System (AIS) is as follows: 

Input: Population size N, Number of clones β, Muation rate ρ, Number of generations G 

Output: Best solution found 

1. P ← initialize_population(N) 

2. evaluate_fitness(P) 

3. For g = 1 to G do 

    a. Best_Solutions ← select_high_affinity(P) 

    b. Clones ← clone_solutions(Best_Solutions, β) 

    c. Mutated_Clones ← mutate_clones(Clones, ρ) 

        i. Operations: swap_genes, reverse_subsequence, insert_gene 

    d. evaluate_fitness(Mutated_Clones) 

    e. P ← replace_population(P, Mutated_Clones, N) 

4. best_solution ← find_best_solution(P) 

5. Return best_solution 

End 

 

This pseudocode describes the Artificial Immune System (AIS) algorithm that initializes a random 

population of solutions and evaluates the fitness of each solution. In each generation, the best solution is selected 

and cloned; then, the clones are mutated using operations such as gene swapping, subsequence reversal, and gene 

insertion. The fitness of the mutated clones is reevaluated, and the mutated clones replace the original population. 

This process is repeated for several generations until the algorithm finds and returns the best solution found 

throughout the iterations. 

 

2.4.    Knapsack Problem 

The pseudocode for solving the Knapsack Problem is as follows: 

Input: Weights W, Values V, Number of items n, Knapsack capacity C 

Output: Maximum value that can be carried in the knapsack 

1. function knapsack(W, V, n, C) 

2.     Create a 2D array K of size (n+1) x (C+1) 

3.     for i from 0 to n do 

4.         for w from 0 to C do 

5.             if i == 0 or w == 0 then 

6.                 K[i][w] ← 0 

7.             else if W[i-1] <= w then 

8.                 K[i][w] ← max(V[i-1] + K[i-1][w-W[i-1]], K[i-1][w]) 

9.             else 

10.                K[i][w] ← K[i-1][w] 

11.    return K[n][C] 

End  
 

The pseudocode above solves the knapsack problem using a dynamic programming approach. This 

algorithm creates a 2D array of K with size (n+1)×(C+1)(n+1) to store the maximum value that can be obtained 

for each combination of a number of items and knapsack capacity. Table initialization is done with a value of zero 

when the number of items or capacity is zero. The algorithm then populates the table by checking whether each 

item whether to be placed in the knapsack or not based on whether the item's weight is less than or equal to the 

current capacity. If an item is included, the maximum value is calculated as the sum of the item value and the 

optimal value of the remaining capacity; otherwise, the previous optimal value is maintained. This process 

continues until the table is complete, and the maximum obtainable value is found at K[n][C]. 

 

2.5.    Proposed Method 

This study suggests using a combination of Genetic Algorithms (GA) and Artificial Immune Systems 

(AIS) to address the Knapsack Problem.  
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1. P ← initialize_population(N, W, V, C) 

2. evaluate_fitness(P, W, V, C) 

3. For g = 1 to G do 

    a. Parents ← select_parents(P) 

    b. Offspring ← crossover(Parents, β) 

    c. Mutated_Offspring ← mutate(Offspring, ρ) 

    d. evaluate_fitness(Mutated_Offspring, W, V, C) 

    e. Combined_Population ← P + Mutated_Offspring 

    f. Best_Solutions ← select_high_affinity(Combined_Population) 

    g. Clones ← clone_solutions(Best_Solutions, γ) 

    h. Mutated_Clones ← mutate(Clones, ρ) 

    i. evaluate_fitness(Mutated_Clones, W, V, C) 

    j. Combined_Population ← Combined_Population + Mutated_Clones 

    k. P ← select_best_individuals(Combined_Population, N) 

4. best_solution ← find_best_solution(P) 

5. Return best_solution 

End 

 

function initialize_population(N, W, V, C) 

    P ← [] 

    for i from 1 to N do 

        individual ← random_binary_vector(length(W)) 

        P.append(individual) 

    return P 

 

function evaluate_fitness(P, W, V, C) 

    for individual in P do 

        weight, value ← 0, 0 

        for i from 1 to length(individual) do 

            if individual[i] == 1 then 

                weight += W[i-1] 

                value += V[i-1] 

        if weight > C then 

            individual.fitness ← 0 

        else 

            individual.fitness ← value 

 

function select_parents(P) 

    return tournament_selection(P) 

 

function crossover(Parents, β) 

    Offspring ← [] 

    for i from 1 to length(Parents) by 2 do 

        if random(0, 1) < β then 

            Offspring.append(perform_crossover(Parents[i], Parents[i+1])) 

        else 

            Offspring.append(Parents[i], Parents[i+1]) 

    return Offspring 

 

function mutate(Individuals, ρ) 

    for individual in Individuals do 

        if random(0, 1) < ρ then 

            perform_mutation(individual) 

    return Individuals 

 

function select_high_affinity(P) 

    P.sort_by_fitness() 

    return P[1:floor(length(P)/2)] 
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function clone_solutions(Best_Solutions, γ) 

    Clones ← [] 

    for solution in Best_Solutions do 

        for i from 1 to γ do 

            Clones.append(solution) 

    return Clones 

 

function select_best_individuals(P, N) 

    P.sort_by_fitness() 

    return P[1:N] 

 

function find_best_solution(P) 

    P.sort_by_fitness() 

    return P[1] 

 

function perform_crossover(parent1, parent2) 

    point ← random(1, length(parent1)-1) 

    return parent1[1:point] + parent2[point+1:end], parent2[1:point] + parent1[point+1:end] 

 

function perform_mutation(individual) 

    point ← random(1, length(individual)) 

    individual[point] ← 1 - individual[point] 
  

III. RESULTS AND DISCUSSIONS 

3.1. Results 

We generated the testing data with 50 objects. The results of the testing as follows 

Size={ 91, 72, 63, 81, 71, 82, 67, 51, 52, 35, 60, 41, 38, 41, 49, 41, 19, 40, 50, 41, 39, 43, 31, 33, 27, 31, 40, 39, 

40, 29, 39, 41, 59, 49, 30, 59, 19, 31, 40, 20, 30, 15, 25, 20, 30, 40, 4, 5, 2, 2}, Value={190, 218, 207, 202, 220, 

171, 156, 161, 157, 156, 151, 121, 131, 131, 111, 117, 141, 120, 111, 121, 108, 99, 101, 102, 85, 79, 81, 86, 90, 

73, 74, 69, 71, 68, 70, 65, 56, 65, 59, 61, 46, 40, 41, 31, 21, 18, 9, 6, 4, 2}, and W = 1000. 

 

In order to facilitate comparison, we implemented the genetic algorithm, the Artificial Immune System, 

and GA-IAS. The results of the experiment are as follows: 

1. The Genetic Algorithm: Total Value is 3121 Total weight is 1000, maximum 71 iteration 

2. The Artificial Immune System Algorithm: Total Value is 3123 Total weight is 1000, maximum 85 

iteration 

3. The GA-AIS Algorithm: Total Value is 3123 Total weight is 1000, maximum 69 iteration 

 

3.2. Discussion 

All three algorithms were able to fill the knapsack to its maximum capacity (1000) while achieving high 

total values. The AIS and GA-AIS algorithms both achieved the highest total value of 3123, slightly outperforming 

the GA, which achieved a total value of 3121. This indicates that the AIS and GA-AIS algorithms were slightly 

more effective in selecting the optimal combination of items. 

 

Maximum Iterations 

The number of iterations required to reach the optimal or near-optimal solution varied among the algorithms: 

 The GA-AIS hybrid algorithm required the fewest iterations (69), suggesting a more efficient search 

process. 

 The GA required 71 iterations, indicating a slightly less efficient search compared to the GA-AIS. 

 The AIS required the most iterations (85), suggesting that while it achieved the highest total value, it did 

so with greater computational effort. 

 

Comparative Analysis 

1. Genetic Algorithm (GA): The GA demonstrated robust performance, achieving a high total value with 

a relatively low number of iterations. Its total value was only marginally lower than the AIS and GA-

AIS algorithms, indicating it is a competitive approach for the Knapsack Problem. 

2. Artificial Immune System (AIS): The AIS achieved the highest total value but required the most 

iterations to do so. This indicates that while AIS is highly effective in finding optimal solutions, it may 

require more computational effort and time. 
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3. GA-AIS Hybrid Algorithm: The GA-AIS hybrid algorithm combined the strengths of both GA and 

AIS, achieving the highest total value with the fewest iterations. This suggests that the hybrid approach 

is highly efficient and effective, leveraging the exploration capabilities of GA and the optimization 

strengths of AIS. 

 

Practical Implications 

The choice of algorithm depends on the specific requirements and constraints of the problem at hand: 

 Efficiency: If computational efficiency and speed are paramount, the GA-AIS hybrid algorithm is the 

preferred choice due to its lower iteration count. 

 Optimality: If achieving the absolute highest value is the goal, both AIS and GA-AIS are suitable, with 

AIS being slightly more thorough but at a higher computational cost. 

 Balance: The GA provides a good balance between efficiency and optimality, making it a versatile 

choice for various problem sizes and constraints. 

 

IV. CONCLUSION  

 The comparative study highlights that while all three algorithms are effective for the Knapsack Problem, 

the GA-AIS hybrid algorithm stands out due to its combination of high total value and computational efficiency. 

The AIS algorithm, while achieving the highest total value, requires more iterations, making it less efficient in 

terms of computational effort. The GA offers a balanced approach, achieving competitive results with moderate 

computational effort. Future work could explore further optimization of these algorithms, potentially integrating 

additional heuristics or adaptive mechanisms to enhance performance. Additionally, testing on larger datasets and 

different problem instances would provide more insights into the scalability and robustness of these algorithms. 
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