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Abstract:Variational integrators are powerful tools for advanced numerical solutions of mechanical problems 
appeared in mathematics and physical sciences. Compared to standard schemes they may be applied to complex 
systems where the computational cost is very high. In the present paper, we make an attempt to explore whether 
their methodology may be effective in adaptive time step variational integrators with the use of the space-time 
geodesic approach of classical mechanics while being combined with a simultaneous decrease, as much as 
possible, of the corresponding cost. Following the advantages of our previously deduced variational 
integrators, we now formulate a derivation of time adaptive high order exponential variational integrators. As a 
first step, this is successfully achieved for systems of which their Lagrangian is of separable form. Towards this 
end, we start from unfolding the standard Euler-Lagrange system to its space-time manifold and then we rewrite 
it as a geodesic problem with zero potential energy. Simulation results, without the need to optimise the step 
size, show that one can employ the space-time geodesic formulation to generate an adaptive scheme that still 
preserves general underlying geometric structure properties of the system 
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I. INTRODUCTION 
In recent years, many scientific phenomena are investigated by computer models  and codes which are 

remarkably complex. Computational experiments, i.e. runs of these codes executed with various input data, 
make predictions (through the provided output) of several physical observables and parameters. In most of the 
cases the runs are computationally expensive and often our objective is the required computer experiments to be 
less time consuming predictors of the output for a specific data.   

In the special case when solving ordinary differential equations (ODEs) using numerical integration 
schemes, in order to reduce computational cost, the time adaptivity is a key ingrediente (Marsden et al., 1998; 
Hairer, 1997). Admittedly this tool possesses significant advantages with respect to the efficiency, the 
computational accuracy, and the ease in the implementation. Although time adaptivity performs remarkably well 
in many applications for problems involving the integration of Hamiltonian systems, the use of symplectic 
integrators has been well established (Kane et al., 1999; Leok and Zhang, 2011; Bloebaum and Saake, 2015). 

During the past few decades many authors have addressed various derivations and have adopted 
symplectic integrators with variable time steps, despite the fact that the early results were not quite promising 
(Skeel, 1993; Calvo and Sanz-Serna, 1993; Wright, 1998). Essentially, two main types of time variation steps 
have been utilized. In the first type the time step was explicitly varied in the flow of the time, a choice mostly 
resulting to problems, while in the second, the time step was chosen while using the dynamical variables of the 
system, namely particle positions 𝑞 and corresponding momenta 𝑝. For the case of the variable time, the derived 
equations are no longer in canonical Hamiltonian form, a fact that makes the obtained results rather unreliable.    

The aforementioned shortcomings may be reduced if an adaptive time step integrator frame, that uses a 
high order non-symplectic scheme, will be adopted (Hairer, 1997; Reich, 1999, Marsden and West, 2001; Stern 
and Grinspun, 2009). In our present work, we improve the Galerkin type high order integrators of (Kosmas and 
Vlachos, 2010; Kosmas and Leyendecker, 2016; Kosmas and Leyendecker, 2019) in such a way that adaptive 
time stepping will be used. In addition to the space-time approach of (Marsden et al., 1998; Kane et al., 1999), 
the geodesic view point of (Nair, 2012; Kosmas and Vlachos, 2016) is regarded which provides the possibility 
to overcome problems that appear when symplectic integrators with variable time steps are utilized. One of our 
goals is to derive an optimal time-step adaptation method computationally cheaper as much as possible (Kosmas 
and Leyendecker, 2012; Kosmas, 2011; Kosmas, 2019; Kosmas and Leyendecker, 2015, Kosmas and 
paqpadopoulos, 2014).   
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Towards this end, we first formulate the combined space-time and geodesic ideas of adaptive time 
stepping (Section 2) in connection with the exponential variational integrators (Section 3). Then, the proposed 
methods are presented in Section 4 and tested in a couple of numerical applications in Section 5. Finally, the 
advantages  of the derived method are summerized in Section 6. 

 
II. THE GEODESIC APPROACH IN DERIVING TIME ADAPTIVE INTEGRATORS 

In order to derive time adaptive integrators, we start from the continuous Lagrangian formulation and 
consider physical problems described through  Lagrangian functions of the form 

L x, x = !
!
𝑥! − 𝑉 𝑥 , 𝑥 ∈ ℝ   (1) 

The corresponding Euler-Lagrange equation is the second order differential equation  
x = !!

!!
      (2) 

where, as usually, dots represent time derivatives. By choosing the initial conditions as 𝑥! = 𝑥(0) and 
𝑥! = 𝑥(0), an expression of x 𝑡  can be determined and adopted for some time interval t ∈ [0,T], as a solution 
of (1). 

We then consider the Lagrangian 
𝐿 = !

!
𝑥!! + !

!!
𝑡!!    (3) 

where the primes denote differentiation with respect to some parameter 𝜆, see (Kosmas and Vlachos, 2016). For 
the latter Lagrangian the corresponding Euler-Lagrange equations and the relevant initial conditions take the 
form 

𝑥!! = − !
!!!

𝑥!! + !
!!
𝑡!!    for 𝑥! = 𝑥 0 , 𝑥!! = 𝑥 0 𝑡!!,       (4a) 

𝑡!! = − !
!
!"
!"
𝑡!𝑥!  for 𝑡! = 0, 𝑡!! = 𝑎𝑉(𝑥!).             (4b) 

It is worth mentioning that, even though 𝐿 depends upon 𝑉 and couples the space and time variables in a non 
trivial manner, the evolution equations for 𝑥 depend only on  𝜕𝑉 𝜕𝑥. Furthermore, we note that one could add 
on 𝑉 any constant without changing the 𝑥-dynamics (Nair, 2012; Kosmas and Vlachos, 2016). 

We now consider two functions of the parameter 𝜆, namely 𝑥(𝜆) and 𝑡(𝜆), that are further assumed as 
solutions of equations (4) for some time interval 𝜆 ∈ [0,𝑇]. For those solutions we can write  𝑥 𝜆 = 𝑥(2𝑡/ 𝛼) 
as long as both sides of (4) are explicitly defined, that is, as long as the solutions for 𝑥 and 𝑥differ only by an 
arbitrary constant. This constant, in essence, is just a rescaling of the time (Nair, 2012; Kosmas and Vlachos, 
2016). 

In exploring for appropriate expressions for 𝑥 𝜆  and 𝑡(𝜆), we consider the two Lagrangians  

𝐿! =  𝑥!! + 𝑓(𝑥)𝑡!!  ,  𝐿! =
!
!
𝑥!! + 𝑓(𝑥)𝑡!!   (5) 

The action corresponding to 𝐿! is invariant under arbitrary reparametrization of 𝜆, whereas the 𝐿! action is only 
affine reparametrization invariant. This leads to Euler-Lagrange equations corresponding to 𝐿! that are affine 
time reparametrization invariants. 

The Euler-Lagrange equations that come out of 𝐿!are 

!
!!

!!

!!!!!(!)!!!
= !!

!

! !!!!!(!)!!!
!"
!"

  (6a) 

!
!!

!(!)!!

!!!!!(!)!!!
= 0.     (6b) 

The later equations are also reparametrization invariants with respect to 𝜆, i.e. they are invariant under the 
replacements 𝜆 = 𝜆(𝜇) and 𝑑𝜆/𝑑𝜇 ≠ 0, which means that, a solution of (6) defines a curve in the space (𝑥, 𝑡). 
Furthermore, this solution gives us information on which curve does it belong, but it does not show us the exact 
point at that curve. The curve in question acts as a geodesic information for the system of equations as well as 
for its solution. The later equations are then considered to be evolution equations, which provide us with, not 
only the shape of the curve, but also with its parametrization (Kosmas and Vlachos, 2016).    

In order to understand more deeply the latter conclusions, we find it helpful for the reader to proceed 
with an example of a specific numerical scheme, which, as mentioned above, is chosen here to be the high order 
exponential variational integrators (Kosmas and Vlachos, 2010; Kosmas and Leyendecker, 2016; Kosmas and 
Leyendecker, 2019). 
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III. THE ADVANTAGES OF EXPONENTIAL VARIATIONAL INTEGRATORS 
The derivation of high order variational integrators, applicable for physical systems where the 

Lagrangian is of separable form, come out of similar techniques to those employed in the theory of discrete 
variational calculus, see e.g. (Marsden and West, 2001). To that end, for a smooth and finite dimensional 
configuration manifold 𝑄, one defines the discrete Lagrangian  

𝐿!:𝑄×𝑄⟶ ℝ.    (7) 
This Lagrangian may be considered as an approximation of a continuous action obtained as  

𝐿! 𝑞! , 𝑞!!!, ℎ! ≃ 𝐿 𝑞, 𝑞 𝑑𝑡!!!!
!!

.   (8) 
Then the action sum 𝑆!:𝑄!!! ⟶ ℝ, with ∈ ℕ, that corresponds to the above Lagrangian is defined as 

𝑆! 𝛾! = ℎ!𝐿! 𝑞! , 𝑞!!!, ℎ! ,!!!
!!!   (9) 

where 𝛾! = (𝑞!,… , 𝑞!) denotes the discrete trajectory of the studied system (and ℎ! the 𝑘!! time step). 
Following the procedure of the continuous settings we can further compute the derivative of 𝐿! as  

𝑑𝐿! 𝑞!, 𝑞! = 𝐷!𝐿! 𝑞!, 𝑞! + 𝐷!𝐿! 𝑞!, 𝑞! ,  (10) 
interpreting 𝐷!𝐿! for the derivative with respect to the 𝑖-argument of 𝐿!. According to the discrete variational 
principle, the solutions of the discrete system are determined from 𝐿! by extremizing the action sum keeping the 
endpoints 𝑞! and 𝑞! fixed. Extremizing 𝑆! over all the intermediate points of 𝛾!, the obtained system of 
difference equations is  

ℎ!!!𝐷!𝐿! 𝑞!!!, 𝑞! , ℎ!!! + ℎ!𝐷!𝐿! 𝑞! , 𝑞!!!, ℎ! = 0. (11) 
This discrete version of the continuous Euler-Lagrange equations are known as discrete Euler-Lagrange 
equations (Marsden and West, 2001; Kosmas and Vlachos, 2010).    

To derive high order methods addressed in this work, we approximate the action integral along the 
curve segment between 𝑞! and 𝑞!!! using a discrete Lagrangian that depends only on the end points, see Eq. 
(8). This way, we obtain expressions for the configurations 𝑞!

!  and velocities 𝑞!
! ,𝑗 = 0,… , 𝑆 − 1, S ∈ ℕ, at time 

𝑡!
! ∈ [𝑡!

! , 𝑡!!!
! ]. Then, by expressing the 𝑡!

!  as 𝑡!
! = 𝑡! + 𝐶!

!ℎ! for 𝐶!
! ∈ [0,1] such that 𝐶!! = 0,𝐶!! = 1, we write 

(Kosmas and Vlachos, 2010) 
𝑞!
! = 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!!,    

𝑞!
! = 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!! .   (12) 

We next choose the functions  

𝑔! 𝑡!
! = sin 𝑢 −

!!
!!!!
!!

𝑢 sin!! 𝑢 ,   

𝑔! 𝑡!
! = sin

!!
!!!!
!!

𝑢 sin!! 𝑢 ,    (13) 

to represent the oscillatory behavior of the solution. For the sake of continuity, the conditions   
𝑔! 𝑡!!! = 𝑔! 𝑡! = 0 and  𝑔! 𝑡! = 𝑔! 𝑡!!! = 1  (14) 

are required to be fulfilled (Kosmas and Leyendecker, 2012; Kosmas and Vlachos, 2012; Kosmas and 
Leyendecker, 2015).    

It should be mentioned that for any different choice of interpolation, we define the discrete Lagrangian 
by a weighted sum of the form (Kosmas and Vlachos, 2010) 

𝐿! 𝑞! , 𝑞!!!, ℎ! = ℎ!𝑤!𝐿 𝑞 𝑡!
! , 𝑞 𝑡!

!!!!
!!! ,  (15) 

where, as can be readily proved, it holds  
𝑤! 𝐶!

! !!!!
!!! = !

!!!
,     (16) 

with 𝑚=0,1,...,S-1 and 𝑚=0,1,...,N-1 (Kosmas and Vlachos, 2010; Kosmas and Leyendecker, 2012).  By 
applying the above interpolation technique in combination with the expressions of (13) and following the 
analysis of (Kosmas and Vlachos, 2010; Kosmas and Leyendecker, 2012), the parameter 𝑢 entering equations 
(13) must be chosen to be 𝑢 = 𝜔ℎ. For problems involving a definite frequency 𝜔 (such as the harmonic 
oscillator), the parameter 𝑢 can be easily computed. However, for the solution of orbital problems of the general 
𝑁-body problem, where no unique frequency of the motion can be in general determined, a new parameter 𝑢 
must be defined by estimating the frequency of the motion for any moving point mass (Kosmas and 
Leyendecker, 2016; Kosmas and Leyendecker, 2019). 
 

IV. TIME ADAPTIVE EXPONENTIAL VARIATIONAL INTEGRATORS 
In this section we apply the steps followed in Section 3, in the Lagrangians 𝐿! and 𝐿!of equations (5). 

Using (15), for the length action given by 𝐿!, the corresponding discrete Lagrangian reads  
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𝐿!! 𝑞! , 𝑞!!!, ℎ! = ℎ!𝑤! 𝑥!!
! !

+ 𝑓 𝑥!
! 𝑡!!

! !!!!
!!! ,    (17) 

where the 𝑥!
! are defined using (12) and 𝑥!!

! , 𝑡!!
!  using the expression  

𝑞!!
! =

!!!
!

!!
= 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!!

!"
!!
= 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!!.  (18) 

For the Lagrangian (17), the discrete Euler-Lagrange equations (11) give the discrete analogues of (6a) as  
𝑤! !!

!!!,!!!
2𝑔! 𝑡!

! 𝑔! 𝑡!
! 𝑥!!! + 𝑔! 𝑡!

! 𝑥! +!!!
!!!

!
!!!

𝑓 𝑔! 𝑡!
! 𝑥!!! + 𝑔! 𝑡!

! 𝑥! 𝑔! 𝑡!
! 𝑡!!! + 𝑔! 𝑡!

! 𝑡!
!
+

𝑤! !!!!
!!!!!,!

2𝑔! 𝑡!
! 𝑔! 𝑡!

! 𝑥! + 𝑔! 𝑡!
! 𝑥!!! +!!!

!!!

!
!!!

𝑓 𝑔! 𝑡!
! 𝑥! + 𝑔! 𝑡!

! 𝑥!!! 𝑔! 𝑡!
! 𝑡! + 𝑔! 𝑡!

! 𝑡!!!
!

,   (19) 
and of (6b) as  

𝑤! !!!! !!
!

!!,!!!
𝑓 𝑔! 𝑡!

! 𝑥!!! + 𝑔! 𝑡!
! 𝑥! 𝑔! 𝑡!

! 𝑡!!! + 𝑔! 𝑡!
! 𝑡!

!!!!
!!! + 𝑤! !!!!!! !!

!

!!!!,!
𝑓 𝑔! 𝑡!

! 𝑥! +!!!
!!!

𝑔! 𝑡!
! 𝑥!!! 𝑔! 𝑡!

! 𝑥! + 𝑔! 𝑡!
! 𝑥!!! ,   (20) 

In the latter equation 𝑑!!!,! is given by  

𝑑!!!,! = 𝑔! 𝑡!
! 𝑥! + 𝑔! 𝑡!

! 𝑥!!!
!
+ 𝑓 𝑔! 𝑡!

! 𝑥! + 𝑔! 𝑡!
! 𝑥!!! 𝑔! 𝑡!

! 𝑡!!! + 𝑔! 𝑡!
! 𝑡!

!
!
!, (21) 

and 𝑑!,!!! by  

𝑑!,!!! = 𝑔! 𝑡!
! 𝑥!!! + 𝑔! 𝑡!

! 𝑥!
!
+ 𝑓 𝑔! 𝑡!!!

! 𝑥!!! + 𝑔! 𝑡!!!
! 𝑥!!! 𝑔! 𝑡!!!

! 𝑡!!! + 𝑔! 𝑡!!!
! 𝑡!!!

!
!
!,  

(22) 
In accordance with the continuous case, equations (19) and (20) are not independent. To solve the 

system above, we can choose arbitrary step sizes in either 𝑡 or 𝑥 direction and solve these equations for the 𝑥 or 
𝑡, respectively.   

Once the discrete Euler-Lagrange equations (19) and (20) are solved, we get a sequence of 
points 𝑥!, 𝑡! ,… , 𝑥! , 𝑡! , where 𝑡!,… , 𝑡! does not necessarily represent the physical time. Using this sequence 
of points, for the discrete Hamiltonian (Nair, 2012; Kosmas and Vlachos, 2016) 

𝐻! 𝑥!, 𝑥!, ℎ! = −ℎ!𝐷!𝐿! 𝑥!, 𝑥!, ℎ! − 𝐿! 𝑞!, 𝑞!, ℎ! ,   (23) 
and recalling that the energy expressed by the Hamiltonian is conjugate variable of the physical time, i.e.  

𝐻! 𝑥!, 𝑥!, ℎ! = 𝐻! 𝑥!, 𝑥!, ℎ!       (24) 
we can restore the physical time. 
 
Figure1. Energy error for the harmonic oscillator using trigonometric interpolation (Section 3) versus the 

time adaptive one (Section 4) for the frequencies 𝝎 = 𝟏,𝟓,𝟏𝟎,𝟐𝟎. 
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V. NUMERICAL RESULTS 
5.1 Harmonic oscillator 

We will first test the proposed numerical scheme in the case of the simple pendulum described through 
the Lagrangian 

𝐿 𝑞, 𝑞 = !
!
𝑞! − !

!
𝜔!𝑞!,   (25) 

which leads to the equation of motion 
𝑞 = −𝜔!𝑞.   (26) 

Using the interpolation of (12), the discrete Lagrangian governing its motion takes the form 
𝐿! 𝑞! , 𝑞!!! = !

!
𝑤! 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!!

!!!!
!!! − 𝜔! 𝑤! 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!!

!!!!
!!! , (27) 

For this discrete Lagrangian, following Section 4, the discrete Euler-Lagrange equations provide the two-step 
variational integrator (Kosmas and Vlachos, 2012;Kosmas and Leyendecker, 2019) 

𝑞!!! +
!! !! !!

! !
!!! !!

! !
!!! !! !!

! !
!!! !!

! !!!!
!!!

!! !! !!
! !! !!

! !!!!! !!
! !! !!

!!!!
!!!

𝑞! + 𝑞!!! = 0,  (28) 

In order to demonstrate the benefits of the proposed technique on the numerical accuracy of the 
obtained methods, we test the performance by comparing the methods of Section 3 with the ones proposed in 
Section 4. Towards this purpose, we check the energy error at a specific integration time 𝑡 = 3 (arbitrary taken) 
for five different frequencies 𝜔 ∈ 1, 5, 10, 15, 20  and initial conditions 𝑞!, 𝑝! = (2,1), see Figure 1. As can 
be seen both methods increase the energy error as the frequency of the problem increases. Secondly, although 
for relatively small choices of 𝜔 < 5 both methods lead to energy error smaller than about 10!!!, for high 
frequency values, constant time step schemes lead to clearly larger energy error.  

In computing the above results, both methods were considered to be third order methods, i.e. 𝑆 = 4, 
while similar results have been obtained for other choices of 𝑆. We should also note that, we have chosen the 
same initial time step ℎ = 0.05 for all results of Figure 1.  

In order to illustrate how the time step change effectively the computational cost, which was one of the 
main purposes of our present work, we consider below a more complicated example.  
 
5.2 The two-body problem 
In the known Kepler's problem (also called the two-body problem), two objects are interacting through a central 
force field. By choosing one of the bodies as the centre of the coordinate system, the resulting motion is a planar 
one. Assuming (whithout loss of generality) that masses and gravitational constant are equal to 1, we denote the 
position of the moving body by 𝑞 = 𝑞!, 𝑞! !. Then the Lagrangian of the system takes the form 

𝐿 𝑞, 𝑞 = !
!
𝑞!𝑞 + !

!
,     (29) 

The initial conditions are taken appropriately as in (Hairer, 1997) 

𝑞 = 1 − 𝜀, 0 ! ,   𝑞 = 0, !!!
!!!

!

,   (30) 

where 𝜀 is the eccentricity of the elliptical trajectory of the orbiting object.To check the efficiency of the 
proposed technique, we consider here only orbits with remarkably high eccentricities (𝜀 = 0.99) and test the 
performance by comparing the methods of Section 3 with the ones proposed in Section 4 for long term 
integrations, i.e. for 10! periods. Figure 2 shows the exact orbit obtained with the method of Section 3 (solid 
line), the calculated points for the first period (points labeled with ∘) and the calculated points for the last period 
(points labeled with ⊡). While most of the standard symplectic schemes fail to track the orbit for such a high 
eccentricity (among them the one discussed in Section 3, see (Hairer, 1997), when adaptive time step is 
considered, the resulting integrator is remarkably stable keeping the orbit close to the exact one. For this 
numerical experiment the observed energy error is oscillating around much smaller values, i.e. around 10!!. 
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Figure2. Exact solution of the 𝟐-body problem for 𝟏𝟎𝟔 periods and for eccentricity 𝟎.𝟗𝟗 (solid line). 
Calculated points for the first (∘) and last period (⊡) using adaptive exponential variational integrators of 

Section 4. 

 
 
Finally, in order to explore the numerical convergence of the proposed method, we choose as initial 

conditions 𝑞!, 𝑝! = 2,2  and the time interval [0,3] (Kosmas and Leyendecker, 2019). We first calculate the 
global errors for the position at 𝑡 = 3 (arbitrary taken, but following Stern, 2009; Kosmas and Leyendecker, 
2019) whereas using constant time steps ℎ ∈ 0.01,0.05,0.1,0.5,1 . Figure 3 shows the above errors versus the 
computational time needed to obtain them (red line). It is obvious that smaller position errors are obtained for 
short time steps, which leads to bigger computational time. When the adaptive time step method of Section 4 
was applied (blue line), the position error obtained was remarkably smaller. It should be mentioned that, in 
obtaining these results, we forced the proposed schemes to take the same computational time with the ones 
taken for constant time step. 
 
Figure3. Position error for the 𝟐-body problem for eccentricity 𝟎.𝟗𝟗 at an arbitrary taken time 𝒕 = 𝟑 for 
the exponential integrators with constant time step (red line) versus the one that uses adaptive time step 

(blue line). 

 
 

VI. CONCLUSIONS 
In the present paper, an approach for deriving high order exponential variational integrators with 

adaptive time step has been developed. Focusing on systems of which the Lagrangian is of separable form, the 
proposed technique unfolds the standard Euler-Lagrange character to its space-time manifold and translates it 
through the geodesic (shortest route) connecting two points. From the adaptive time step methods addressed 
here, rather than optimizing the choice of step sizing, we introduce an artificial time step parameter, and use the 
energy behaviour in order to calculate the actual one.  

Simulation tests showed that, this technique integrates efficiently stiff systems (like the two body 
problem with very high eccentricity up to 0.99) while conserving at the same time all the benefits of the 
classical variational integrators. 
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